

Appendix D Example 20 – Individual Falsework Pads – Asymmetrical Loading

Refer to *Falsework Manual*, Section 8-2.06B, *Analysis of Asymmetrical Pads*. This example demonstrates how to analyze individual asymmetrical falsework pads.

Given Information

Timber pads:

Three 6x16 Rough Douglas Fir-Larch #2 (G=0.50)

Corbel:

12x12 Rough Douglas Fir-Larch #1 (G=0.50)

Post:

12x12 Douglas Fir-Larch #1 (G=0.50)

Allowable soil pressure = 3500 psf

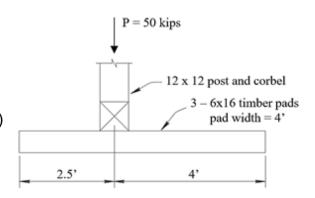


Figure D-20-1. Asymmetrical Individual Pad with Single Corbel

Check Pad

1. Calculate allowable bending stress

Reference design value in bending F_b = 875 psi (NDS supplement table 4D)

Adjustment factors from NDS table 4.3.1:

$C_D = 1.25$	Duration Factor
$C_{M} = 1.0$	Wet Service Factor NDS table 4D (Assume < 19% moisture content)
$C_t = 1.0$	Temperature Factor NDS table 2.3.3 (Temp up to 100°F)
$C_L = 1.0$	Beam Stability Factor NDS 4.4.1
$C_F = 1.0$	Size Factor NDS Table 4D
$C_{fu} = 1.0$	Flat Use Factor NDS table 4D
$C_i = 1.0$	Incising Factor NDS 4.3.8
$C_r = 1.0$	Repetitive Member Factor NDS 4.3.9

Adjusted design value $F_b' = F_b (C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_f)(C_r) = 1094 psi$

2. Calculate adjusted effective length

$$L_e = L_{SYM} = \frac{1}{12} \left(\frac{8F_b'S}{1000P} + t \right) = \frac{1}{12} \left(\frac{8(1094)(288)}{1000(50)} + 12 \right) = 5.20 \text{ ft}$$

$$S = \frac{bh^2}{6} = \frac{3(16)(6)^2}{6} = 288 \text{ in}^3$$

3. Find limiting length on short side

Compare $\frac{1}{2}$ of effective length and actual length

$$\frac{1}{2}$$
 (5.20) = 2.60 > 2.50; Pad length (L₁) = 2.50 ft

4. Calculate limiting length on long side

Compare $\frac{1}{2}$ of effective length and actual length

$$\frac{1}{2}$$
 (5.20) = 2.60 < 4.0; Pad length (L₂) = 2.60 ft

5. Calculate soil pressure

Bearing length = $L_1 + L_2 = 2.50 + 2.60 = 5.10$ ft

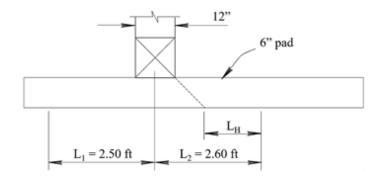
Soil pressure =
$$\frac{P}{A} = \frac{50000}{4(5.10)}$$
 = 2451 psf

2451 psf ≤ 3500 psf allowable OK

6. Calculate horizontal shear on the long side

Reference design value in shear F_v = 170 psi (NDS supplement table 4D)

Adjustment factors from NDS table 4.3.1:


 $C_D = 1.25$ Duration Factor

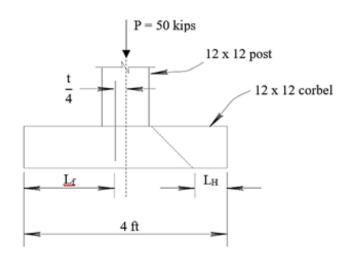
C_M = 1.0 Wet Service Factor NDS table 4D (Assume < 19% moisture content)

Ct = 1.0 Temperature Factor NDS table 2.3.3 (Temp up to 100°F)

C_i = 1.0 Incising Factor NDS table 4.3.8

Adjusted design value $F_v' = F_v (C_D)(C_M)(C_t)(C_i) = 213 \text{ psi}$

LH =
$$2.60 - \frac{12/12}{2} - \frac{6}{12} = 1.50 \text{ ft}$$


$$V = (2451)(1.60)(4.0) = 15686 lb$$

$$f_V = \frac{3V}{2A} = \frac{3(15686)}{2(6)(16)(3)} = 82 \text{ psi}$$

82 psi < 213 allowable **OK**

Figure D-20-2. Asymmetrical Pad Shear Dimensions

Check Corbel

$$W = \frac{50000}{4} = 12500 \text{ plf}$$

$$S = \frac{bh^2}{6} = \frac{12(12)^2}{6} = 288 \text{ in}^3$$

$$L_f = \frac{4.0}{2} - \frac{12/12}{4} = 1.75 \text{ ft}$$

$$L_{H} = \frac{4.0}{2} - \frac{12/12}{2} - \frac{12}{12} = 0.5 \text{ ft}$$

Figure D-20-3. Timber Corbel Flexure and Shear Dimensions

1. Calculate compression perpendicular to grain

Reference design value in shear $F_c\perp$ = 625 psi (NDS supplement table 4D) Adjustment factors from NDS table 4.3.1:

C_M = 1.0 Wet Service Factor NDS table 4D (Assume < 19% moisture content)

Ct = 1.0 Temperature Factor NDS table 2.3.3 (Temp up to 100°F)

 $C_i = 1.0$ Incising Factor NDS table 4.3.8

C_b = 1.0 Bearing Area Factor NDS 3.10.4

Adjusted design value $F_c\bot' = F_c\bot(C_M)(C_t)(C_i)(C_b) = 625$ psi

$$f_c = \frac{P}{A} = \frac{50000}{12 \times 12} = 347 \text{ psi}$$

347 psi < 625 allowable **OK**

2. Calculate stress due to horizontal shear

$$V = (12500)(0.5) = 6250 lbs$$

$$f_V = \frac{3V}{2A} = \frac{3(6250)}{2(12)(12)} = 65 \text{ psi}$$

65 psi < 213 allowable OK

3. Calculate bending stress

$$M = \frac{WL^2}{2} = \frac{(12500)(1.75)^2}{2}$$
 19141 ft-lbs

$$f_b = \frac{M}{S} = \frac{(19141)(12)}{288} = 798 \text{ psi}$$

Reference design value in bending F_b = 1350 psi (NDS supplement table 4D)

Adjusted design value $F_b' = F_b (C_D)(C_M)(C_t)(C_L)(C_F)(C_i)(C_f)(C_r) = 1688 psi$ (see "Pad Check" step 1 for adjustment factors)

798 psi < 1688 psi allowable OK