-

Live Loads and Stresses Historical Background

When preparing plans to modify existing structures, it is often necessary to know the live load and stress criteria used in the original design. Since about 1927, with few exceptions, California Highway System structures have been designed for loads and stresses specified by AASHTO.

The table on the next page summarizes the history of vehicular live loads and selected allowable stresses specified for most structures. Entries in the table for each edition of the AASHTO Specifications for Highway Bridges include items introduced or retained in that edition or introduced in Interim Specifications between that and the next previous edition. Items not taken directly from AASHTO Standards are indicated by footnote.

For more certain and complete information on particular structures, see the General Notes of as built plans, appropriate editions of the AASHTO Standards (available in the Transportation Library), and the historical file of Volume I of the Bridge Planning and Design Manual (available in the Technical Services Section).

LIVE LOADS AND ALLOWABLE STRESSES

Edition	Live Load	```Concrete Stress (Exrreme fiber in flexure, psi)```	Reinforcing Steel (Tension in flexure, Psi)	Structural Streel (Extreme fiber in tension, psi)
1926-1928	H 15	650	16,000	16,000
1931	H 15	$\begin{gathered} 800 \\ 1,200^{\star} \end{gathered}$	$\begin{aligned} & 16,000 \\ & 24,000^{\star} \\ & \hline \end{aligned}$	$\begin{aligned} & 16,000 \\ & 24,000^{*} \end{aligned}$
1935	H 15	900	16,000	18,000
1941	H 15	1,000	18,000	18,000
1944,1949	[$20-516-44$	1,000	$18,000^{\mathrm{a}}$	18,000
1953	H $20-516-44$	$\begin{aligned} & 1,000^{c} \\ & 1,250^{c} \end{aligned}$	$20,000^{\text {b }}$	18,000
1957,1961	$\begin{aligned} & \text { H } 20-\text { S16 - } 44 \\ & \text { \& Alt. } \end{aligned}$	1,200	$20,000$	18,000
1965	HS 20-44	1,200	20,000 ${ }^{\text {b }}$	20,000 (A36)
1969 .	HS 20-44	$1,300^{\mathrm{e}}$	$24,000^{\text {e,f }}$	20,000 (A36)
1973	$\begin{aligned} & \text { HS } 20-44 \\ & \& P 13^{e} \end{aligned}$	$\begin{aligned} & 1,300^{\mathrm{e}} \\ & \text { \& } \mathrm{LFD} \mathrm{D}^{\mathrm{g}} \end{aligned}$	$\begin{aligned} & 24,000^{f} \\ & \& \mathrm{LFD}^{g} \end{aligned}$	$\begin{aligned} & 20,000(\mathrm{~A} 36) \\ & \& \mathrm{LFD}{ }^{\mathrm{g}} \end{aligned}$
$1977,1983$ \& later interims	$\text { HS } 20 \& P 13^{e}$	$\begin{aligned} & 1,300^{\mathrm{e}} \\ & \mathrm{LFD}^{8} \end{aligned}$	$\begin{aligned} & 24,000^{f} \\ & \& \mathrm{LFD}^{\mathrm{f}} \end{aligned}$	$\begin{aligned} & 20,000 \\ & \& L_{F D}{ }^{8}(A 36) \end{aligned}$

* For dead load, temperacure and shrinkage
a Structural grade
b Intermediaze, hard and rail grades
c Caltrans - 1,000 , except 1,200 for box girders, arch ribs, recaiaing valls and pumphouse
d Bureau of Priblic Roads, PPM 20-4, 8-10-56
e Caltrans
f Grade 60
g Load factor Design

P. C Warriner

FLM dr

