

ATTACHMENT 5

4-1 SPREAD FOOTING DATA TABLES

Format for the Foundation Report:

Table 1. Summary of Controlling Loads

Support Location	L (ft)	B (ft)	Controlling Loads						
			M _X (kip-ft)	M_Y (kip-ft)	V _X (kips)	V _Y (kips)	P _{Total} (kips)	P _{Perm} (kips)	Load Combination
Abutment 1				N/A	N/A				
Bent 2							7		
Abutment 3				N/A	N/A				

Table 2. Foundation Design Recommendations for Spread Footing

Support	Footing	Bottom of	Minimum	Total	Service Limit	Strength or	Extreme Event
Location	Size (ft)	Footing	Footing	Permissible	State	Construction	Limit State
		Elevation	Embedment	Support		Limit State	$\Phi_b = 1.00$
		(ft)	Depth	Settlement		$\Phi_b = X$	
			(ft)	(inches)	Permissible	F (1 C	F (1 C
						Factored Gross	Factored Gross
					Net Contact	Nominal	Nominal
	$L \mid B \mid$				Stress ²	Bearing	Bearing
					(ksf)	Resistance ³	Resistance ³
						(ksf)	(ksf)
Abut 1							N/A
Bent 2							
Abut 3							N/A

^{1.} Controlling load combination is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundation on rock.

^{2.} For Service-I Limit State, controlling load combination is the one resulting in the highest ratio of $q_{n.u}/q_{pn}$ for foundations on soil, or $q_{g.max}/q_R$ for foundations on rock. Permissible Net Contact Stresses were calculated for controlling load combinations.

^{3.} For Strength, Construction, and Extreme Event limit State, controlling load combination is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundations on rock, Factored Gross Nominal Bearing Resistances were calculated for controlling load combinations.

Format for the Contract Plans:

Table 3. Spread Footing Date Table¹

Support Location	Service ² Permissible Net Contact Stress (Settlement) (ksf)	Strength/Construction 3 Factored Gross Nominal Bearing Resistance $\phi_b = X$ (ksf)	Extreme Event ³ Factored Gross Nominal Bearing Resistance $\phi_b = 1.00$ (ksf)
Abutment 1			N/A
Bent 2			
Abutment 3			N/A

^{1.} Controlling load combination is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundation on rock.

^{2.} Controlling load combination for Service Limit States is the one resulting in the highest ratio of $q_{n,u}/q_{pn}$ for foundations on soil, or $q_{g,max}/q_R$ for foundations on rock.

^{3.} Controlling load combination for Strength, Construction, and Extreme Event is the one resulting in the highest ratio of $q_{g,u}/q_R$ for foundations on soil, or $q_{g,max}/q_R$ for foundations on rock.