ATTACHMENT 3 # 4-1 Bridge Foundation Loads Table 1. End Supports (Abutments) at Service Limit State | Service Limit State | | M_X (kip-ft) | | $V_Y(\text{kips})$ | | P (kips) ¹
Net | | |---------------------|---|----------------|---------------|--------------------|---------------|------------------------------|------------| | | | M_{X_total} | M_{X_perm} | V_{Y_total} | V_{Y_perm} | P_{total} | P_{perm} | | Eccentricity | $M_{X max}$ | | | | | | | | | $M_{X min}$ | | | | | | | | | P_{total_min} | | | | | | | | | Controlling load combination ² | | | | | | | | Settlement | $M_{X max}$ | | | _ 1 | | | | | | $M_{X min}$ | | | | | | | | | P_{total_max} | | | | | | | | | Controlling load combination ³ | | | | | | | Table 2. End Supports (Abutments) at Strength/Construction Limit States | Strength/Const | truction Limit States | M_X (kip-ft) | V_Y (kips) | P _{total} (kips) ¹
Gross | |----------------|---|----------------|--------------|---| | Bearing | $M_{X min}$ $M_{X min}$ P_{old_max} Controlling load | | | | | | combination ³ $V_{Y max}$ | | | | | Sliding | V _{Y min} P _{total_min} | | | | | | Controlling load combination ⁴ | | | | #### Notes: - 1) Axial force (*P*) is assumed positive if compressive. - 2) Controlling load combination is the one resulting in the highest eccentricity. - Controlling load combination is the one resulting in the highest $q_{n,u}/q_{pn}$ or $q_{g,u}/q_R$ ratio for foundations on soil, or $q_{n,max}/q_{pn}$ or $q_{g,max}/q_R$ ratio for foundations on rock. - 4) Controlling load combination is the one resulting in the highest "factored sliding force/factored sliding resistance" ratio. Table 3. Intermediate Supports (Bents & Piers) at Service Limit State | Service Limit State | | M_X (| M_X (kip-ft) | | M_Y (kips) | | P (kips) ¹
Net | | |---------------------|---|----------------|----------------|----------------|---------------|-------------|------------------------------|--| | | | M_{X_total} | M_{X_perm} | M_{Y_total} | M_{Y_perm} | P_{total} | P_{perm} | | | Eccentricity | $M_{X max}$ | | | | | | | | | | $M_{X min}$ | | | | | | | | | | $M_{Y max}$ | | | | | | | | | | $M_{Y min}$ | | | | | | | | | | P_{total_min} | | | | | | | | | | Controlling load combination ² | | | | | | | | | Settlement | $M_{X max}$ | | | | | | | | | | $M_{X min}$ | | | | | | | | | | $M_{Y max}$ | | | | 7 | | | | | | $M_{Y min}$ | | | | | | | | | | P_{total_max} | | | | | | | | | | Controlling load combination ³ | | | | | | | | Table 4. Intermediate Supports (Bents & Piers) at Strength Limit State | Strengt | h Limit State | M_X (kip-ft) | M_Y (kip-ft) | V_X (kips) | V_Y (kips) | P_{total} (kips) ¹ Gross | |---------|---|----------------|----------------|--------------|--------------|---------------------------------------| | Bearing | $M_{X max}$ | | | | | | | | $M_{X min}$ | | | | | | | | $M_{Y max}$ | | | | | | | | $M_{Y min}$ | | | | | | | | P _{total_max} | | | | | | | | Controlling load | | | | | | | | combination ³ | | | | | | | Sliding | $V_{X max}$ | | | | | | | | $V_{X min}$ | | | | | | | | V _{Y max} | | | | | | | | $V_{Y min}$ | | | | | | | | P_{total_min} | | | | | | | | Controlling load combination ⁴ | | | | | | ## Notes: - 1) Axial force (*P*) is assumed positive if compressive. - 2) Controlling load combination is the one resulting in the highest eccentricity. - 3) Controlling load combination is the one resulting in the highest $q_{n,u}/q_{pn}$ or $q_{g,u}/q_R$ ratio for foundations on soil, or $q_{n,max}/q_{pn}$ or $q_{g,max}/q_R$ ratio for foundations on rock. - 4) Controlling load combination is the one resulting in the highest "factored sliding force/ factored sliding resistance" ratio. Table 5. Intermediate Supports (Bents & Piers) at Extreme Event-I Limit State (Seismic) | Extreme Event–I | M (ki | p-ft) | <i>V</i> (k | ips) | P (kips) | |----------------------------|-------|-------|-------------|-------|-------------| | Limit State | M_X | M_Y | V_X | V_Y | P_{Total} | | M_{dl} -I ^{1,2} | | | | | | | M_{d2} -I | | | | | | | M_{d3} -I | | | | | | | M_{d4} -I | | | | | | | M_{d5} -I | | | | | | | M_{d6} -I | | | | | | | M_{d7} -I | | | | | | | M_{dl} -II | | | | | | | M_{d2} -II | | | | | | | M_{d3} -II | | | | | | | M_{d4} -II | | | | | | | M_{d5} -II | | | | | | | M_{d6} -II | | | | | | | M_{d7} -II | | 1 | | | | ### Notes: - 1) M_{dI} - M_{d7} stand for cases where seismic overstrength moment (M_o) and associated shear (V_o) are applied at 15 degree increments $(0^{\circ}$ $90^{\circ})$ to a symmetrical spread footing. - 2) Cases I and II correspond to highest and lowest column axial forces resulted from seismic overturning in multicolumn bents. For single-column bents the two cases (I and II) will be summarized into one case.