

CONCRETE ANCHORAGE REQUIREMENTS			
Minimum Effective $h_{\text {ef }}$ (in)	Minimum Concrete Thickness no (in	$\begin{aligned} & \text { Minimum } \\ & \text { Eddgen } \\ & \text { Estace } \\ & C_{a}(\text { (in) } \end{aligned}$	$\begin{aligned} & \text { Minimum } \\ & \text { Achor } \\ & \text { Spacing } \\ & \text { S (in) } \end{aligned}$
2	6	6	3

EXPANSION FITTING INSTALLATION POSITION TABLE	
INSTALLATION PERIOD	\% OF MAXIMUM EXPANSION RANGE
December to February	80%
March to May and September to November	50%
June to August	20%

1. Expansion fit+ings and expansion-deflection fit+ings shall be installed adjacent to BB, EB,
joints or hinges (within 8 feet). Fit+ings must
be able to handle up to the Movement Range (MR) noted for the bridge. Stagger fit+ings on either sid of BB, EB, joints or hinges. At expansion fittings,
add gradual field bends as needed. For expansion fitting installation, see "EXPANSION FITTING INSTALLATION position table.
2. For vault locations and other details not shown,
3. Type 1 conduit continues to vault near bridge
4. For short overhangs with reduced space, bridging over the
drip groove will be allowed as directed by the Engineer.
5. For $2^{\prime \prime} \phi$ conduits, a minimum bend radius of $1^{\prime}-2^{\prime \prime}$ point/vaults is 90 degrees or less. For to+al bend degrees from 90 to 180 the, minimum bend
radius for all bend fittings is $2^{\prime}-0$.
6. All mounting hardware shall be protected against corrosion.

PART ELEVATION
Existing barrier
NOTE: Concrete Barrier (Type 1) shown, others similar.

TYPICAL STUD TYPE (WEDGE) $\xrightarrow[\text { STUD MEA }]{\text { NO SCALE }}$

END STOP
PLATE WASHER
2"申 Conduit
(TYPE 1), To+
PLATE WASHER
NO SCALE

EGEND: \qquad ure

