

# 16.4 MATERIAL PROPERTIES FOR EXISTING STRUCTURES

# **16.4.1 GENERAL**

This BDM provides material properties for existing structures.

# **16.4.2 ACTUAL MATERIAL PROPERTIES**

The Project Engineer should contact METS to obtain physical material test results of existing steel components and reinforcement for actual material properties. Actual material properties acquired through testing should be used in place of specified minimum and expected material properties when determining existing bridge element capacities.

# 16.4.3 SPECIFIED MINIMUM MATERIAL PROPERTIES

In the absence of physical test results, specified minimum materials properties of existing concrete, structural steel, and reinforcement found from as-built plans or "Report of Completion – Bridges" may be used.

When material information for structural steel or reinforcement is unavailable on as-built plans or "Report of Completion – Bridges", specified minimum yield and tensile strengths listed in Tables 16.4.3-1 and 16.4.3-2 may be used. Table 16.4.3-1 is based on the AASHTO MBE (AASHTO, 2018; CRSI, 2001). Table 16.4.3-2 is based on the past and current AASHTO bridge design specifications from the 1<sup>st</sup> Edition of Standard Specifications (AASHO, 1927) to the 8<sup>th</sup> Edition of the AASHTO LRFD Bridge Design Specifications (AASHTO, 2017).

**Table 16.4.3-1 Material Properties for Old Steel Reinforcement** 

| Steel Reinforcement                                          | Allowable stress | F <sub>yr</sub> | F <sub>ur</sub> |  |
|--------------------------------------------------------------|------------------|-----------------|-----------------|--|
|                                                              | f₅ (ksi)         | (ksi)           | (ksi)           |  |
| Unknown steel prior to 1954                                  | 18               | 33              | 55              |  |
| Structural Grade                                             | 20               | 36              | 58              |  |
| Billet, Intermediate Grade and Unknown after 1954 (Grade 40) | 20               | 40              | 60              |  |
| Rail or Hard Grade (Grade 50)                                | 24               | 50              | 65              |  |
| Grade 60 (Except A706)                                       | 24               | 60              | 90 (CRSI, 2001) |  |



# Bridge Design Memo 16.4 • October 2022

**Table 16.4.3-2 Material Properties for Historical Structural Steel** 

| ASTM<br>Designation | Plate<br>Thickness<br>t (in.) | Shape<br>Groups | F <sub>y</sub><br>(ksi) | F <sub>u</sub><br>(ksi) | Date Built-Steel (AASHTO<br>Design Specifications)          |  |
|---------------------|-------------------------------|-----------------|-------------------------|-------------------------|-------------------------------------------------------------|--|
| -                   | N/A                           | N/A             | 26                      | 52                      | Prior to 1905                                               |  |
| -                   | N/A                           | N/A             | 30                      | 55                      | 1905 to 1936                                                |  |
| -                   | N/A                           | N/A             | 33                      | 55                      | 1936-1963                                                   |  |
| -                   | N/A                           | N/A             | 36                      | 58                      | After 1963                                                  |  |
| A7                  | N/A                           | N/A             | 30                      | 55                      | 1927 (1st Edition)                                          |  |
| A7                  | N/A                           | N/A             | 33                      | 60                      | 1935 -1961 (2 <sup>nd</sup> – 8 <sup>th</sup> Edition)      |  |
| A8                  | N/A                           | N/A             | 55                      | 90                      | 1935 -1961 (2 <sup>nd</sup> – 8 <sup>th</sup> Edition)      |  |
|                     | <i>t</i> ≤ 1.125"             | N/A             | 50                      | 75                      |                                                             |  |
| A94                 | 1.125"< t ≤ 2"                | N/A             | 47                      | 72                      | 1935 -1961 (2 <sup>nd</sup> – 8 <sup>th</sup> Edition)      |  |
|                     | 2" < t ≤ 4"                   | N/A             | 45                      | 70                      |                                                             |  |
| A36                 | <i>t</i> ≤ 8"                 | All             | 36                      | 58                      | 1965 -1983 (9 <sup>th</sup> – 13 <sup>th</sup> Edition)     |  |
| A441                | 4"< t ≤ 8"                    | N/A             | 40                      | 60                      | 1965 – 1973 (9 <sup>th</sup> – 11 <sup>th</sup> Edition)    |  |
|                     | t ≤ 3/4"                      | I, 1, 2         | 50                      | 70                      | 1004 1070                                                   |  |
| A242, A440, A441    | 3/4"< t ≤ 1.5"                | II, 3           | 46                      | 67                      | 1961 – 1973<br>(8 <sup>th</sup> – 11 <sup>th</sup> Edition) |  |
|                     | 1.5" < t ≤ 4"                 | III, 4,5        | 42                      | 63                      |                                                             |  |
| A.500               | <i>t</i> ≤ 4"                 | 1-4             | 50                      | 70                      |                                                             |  |
| A588                | 4"< t ≤ 5"                    | 5               | 46                      | 67                      | 1973 (11 <sup>th</sup> Edition)                             |  |
|                     | 5"< t ≤ 8"                    | N/A             | 42                      | 63                      |                                                             |  |
| A588                | <i>t</i> ≤ 4"                 | All             | 50                      | 70                      | 1977 -1983 (12 <sup>th</sup> -13 <sup>th</sup> Edition)     |  |



# Bridge Design Memo 16.4 • October 2022

Table 16.4.3-2 (continued) Material Properties for Historical Structural Steel

| ASTM<br>Designation    | Plate<br>Thickness<br>t (in.) | Shape<br>Groups | F <sub>y</sub><br>(ksi) | F <sub>u</sub><br>(ksi) | Date Built-Steel (AASHTO<br>Design Specifications)               |
|------------------------|-------------------------------|-----------------|-------------------------|-------------------------|------------------------------------------------------------------|
| A514/A517              | <i>t</i> ≤ 2.5"               | N/A             | 105                     | 115                     | 1977 -1983                                                       |
|                        | 2.5"< t ≤ 4"                  | N/A             | 90                      | 100                     | (12 <sup>th</sup> -13 <sup>th</sup> Edition)                     |
| A852                   | <i>t</i> ≤ 4"                 | N/A             | 70                      | 90                      | 1983 (13 <sup>th</sup> Edition)                                  |
| A709 Grade 36          | <i>t</i> ≤ 4"                 | All             | 36                      | 58                      | 1989 – 2017<br>(14 <sup>th</sup> – LRFD 8 <sup>th</sup> Edition) |
| A709 Grade 50          | t ≤ 4"                        | All             | 50                      | 65                      | 1989 – 2017<br>(14 <sup>th</sup> – LRFD 8 <sup>th</sup> Edition) |
| A709 Grade 50W         | t ≤ 4"                        | All             | 50                      | 70                      | 1989 – 2017<br>(14 <sup>th</sup> – LRFD 8 <sup>th</sup> Edition) |
| A709 Grade 70W         | <i>t</i> ≤ 4"                 | N/A             | 70                      | 90                      | 1989 -1992<br>(14 <sup>th</sup> – 15 <sup>th</sup> Edition)      |
| A709 Grade<br>100/100W | t ≤ 2.5"                      | N/A             | 100                     | 110                     | 1989 – 2007                                                      |
| 100/100                | 2.5"< t ≤ 4"                  | N/A             | 90                      | 100                     | (14 <sup>th</sup> – LRFD 4th Edition)                            |
| A709 Grade 50S         | N/A                           | All             | 50                      | 65                      | 2004- 2017<br>(LRFD 3 <sup>rd</sup> – 8 <sup>th</sup> Edition)   |
| A709 Grade HPS<br>50W  | t ≤ 4"                        | N/A             | 50                      | 70                      | 2004-2017<br>(LRFD 3 <sup>rd</sup> – 8 <sup>th</sup> Edition)    |
| A709 Grade HPS<br>70W  | t ≤ 4"                        | N/A             | 70                      | 85                      | 2004-2017<br>(LRFD 3 <sup>rd</sup> – 8 <sup>th</sup> Edition)    |
| A709 Grade HPS<br>100W | t ≤ 2.5"                      | N/A             | 100                     | 110                     | 2010 – 2017                                                      |
| 10011                  | 2.5"< t ≤ 4"                  | N/A             | 90                      | 100                     | (LRFD 5 <sup>th</sup> – 8 <sup>th</sup> Edition)                 |

# where:

 $F_u$  = specified minimum tensile strength of steel (ksi)

 $F_{ur}$  = specified minimum tensile strength of steel reinforcement (ksi)

 $F_{y}$  = specified minimum yield strength of steel (ksi)

 $F_{yr}$  = specified minimum yield strength of steel reinforcement (ksi)

 $f_s$  = allowable stress for steel reinforcement (ksi)



# Bridge Design Memo 16.4 • October 2022

When material information for concrete is not available on the as-built plans or "Report of Completion – Bridges" and the concrete is in satisfactory condition, concrete compressive strength used in design,  $f_c'$ , may be taken as 2.5 ksi for structures built prior to 1960, and 3.0 ksi for structures built after 1959 (AASHTO, 2018).

#### 16.4.4 EXPECTED MATERIAL PROPERTIES

In the absence of physical test results, the expected material properties provided in this section should be used.

# 16.4.4.1 Structural Steel

The expected yield strength,  $F_{ye}$ , and the expected tensile strength,  $F_{ue}$ , of existing steel components should be taken as follows (Caltrans, 2016):

$$F_{\rm ve} = R_{\rm v} F_{\rm v}$$
 (16.4.4-1)

$$F_{ue} = R_t F_u \tag{16.4.4-2}$$

where:

 $R_y$  = ratio of the expected yield strength to the specified minimum yield strength

 $R_t$  = ratio of the expected tensile strength to the specified minimum tensile strength

The values of  $R_y$  and  $R_t$  are given in Table 16.4.4-1.

Table 16.4.4-1  $R_y$  and  $R_t$  Values for Structural Steel

| Steel Grade                           | $R_y$ | Rt   |
|---------------------------------------|-------|------|
| Plate and all other products          |       |      |
| ASTM A709 Grade 36, A36               | 1.3   | 1.2  |
| ASTM A709 Grade 50                    | 1.1   | 1.2  |
| Hot-rolled structural shapes and bars |       |      |
| ASTM A709 Grade 36, A36               | 1.5   | 1.2  |
| ASTM A709 Grade 50, A992              | 1.1   | 1.1  |
| Hollow structural sections (HSS)      |       |      |
| ASTM A500 Grade B                     | 1.4   | 1.3  |
| ASTM A501 Grade B                     | 1.4   | 1.3  |
| ASTM A1085                            | 1.25  | 1.15 |
| Pipe                                  |       |      |
| ASTM A53                              | 1.6   | 1.2  |



### 16.4.4.2 Steel Reinforcement

The expected yield strength,  $F_{yer}$ , and the expected tensile strength,  $F_{uer}$ , of existing steel reinforcement should be taken as follows:

Table 16.4.4-2 F<sub>ver</sub> and F<sub>uer</sub> for Steel Reinforcement

| Steel Reinforcement Grade       | F <sub>yr</sub> (ksi) | F <sub>yer</sub> (ksi) | F <sub>ur</sub> (ksi) | F <sub>uer</sub> (ksi) |
|---------------------------------|-----------------------|------------------------|-----------------------|------------------------|
| A706 Grade 60                   | 60                    | 68                     | 80                    | 95                     |
| A706 Grade 80                   | 80                    | 85                     | 98                    | 112                    |
| A615 Grade 60                   | 60                    | 68                     | 90                    | 95                     |
| A615 Grade 40 or older Grade 40 | 40                    | 48                     | 60                    | 68                     |

The Properties of steel reinforcement not shown in Table 16.4.2-2 should be determined on a Project-specific basis.

# 16.4.4.3 Structural Concrete

The expected compressive strength,  $f'_{\alpha}$ , of existing structural concrete in good condition should be taken as 5000 psi.

# **16.4.5 REFERENCES**

- 1. AASHTO. (2018). *The Manual for Bridge Evaluation*, 3<sup>rd</sup> Edition, American Association of State Highway and Transportation Officials, Washington, DC.
- 2. AASHTO. (2017). *AASHTO LRFD Bridge Design Specifications*, 8<sup>th</sup> Edition, American Association of State Highway and Transportation Officials, Washington, DC.
- 3. AASHO. (1927). Standard Specifications for Highway Bridges and Incidental Structures, American Association of State Highway Officials, Washington, DC.
- 4. Caltrans. (2016). *Caltrans Seismic Design Specifications for Steel Bridges*, 2<sup>nd</sup> Edition, California Department of Transportation, Sacramento, CA.
- 5. CRSI. (2001). Evaluation of Reinforcing Bars in Old Reinforced Concrete Structures. Engineering Data Report 48. Concrete Reinforceing Steel Institute, Schaumburg, IL