Section 2 – Temporary Structures SINGLE SPAN TEMPORARY BRIDGE DETAILS

XS Sheet Numbers:

xs2-010-1 to xs2-010-6

Description of Component:

Temporary Bridge Details for Single Span Steel Rolled Wide Flange Girders with Timber Decking

Standard Drawing Features:

The five possible girder types for this single span temporary bridge configuration are presented by girder, diaphragm and span length ranging from 20-70 ft. The bridge is designed to have only 1 lane of traffic open at any given time, regulated through automated signals and reversing traffic control.

Bridge Design

- 1. Designers must select the appropriate design based on span length in Table 1.
- 2. All call-outs shall be updated on the XS sheet details per the Girder/Diaphragm Type selected.
- 3. General Plan, Deck Contours, Foundation Plan and Log of Test Boring sheets should be added to each set of plans in addition to other project-specific details.
- 4. It is the responsibility of the designer to renumber the sheets accordingly and add project specific details.
- 5. It is the responsibility of the designer to consider and incorporate project-specific site conditions in the final design of the temporary bridge.

Table 1 – Girder and Diaphragm Selection by Span Length (Specify Project-specific design information from Table 1 into Contract plan sheets)

Design L (ft)*	Girder	Diaphragm	Maximum Diaphragm Spacing S (ft)*
20-29	W18x86	C10x15.3	
30-39	W24x104	C15x33.9	(1) Spaced @ 1/2L
40-49	W33x130		
50-59	W36x160		(2) Spaced @ 1/3L
60-70	W36x194	MC18x42.7	(3) Spaced @ 1/4L

^(*) Designer must specify the Maximum Diaphragm Spacing S in feet in the Contract plans based on selected Design L that satisfies the Maximum Diaphragm Spacing S required in Table

Last revised: 09-19-2025 1 | P a g e

Drawing Package:

Abutment Layout

Typical Section

Timber Deck Details

- **Diaphragm Details, Simple Span L = 20'-30
- **Diaphragm Details, Simple Span L = 30'-40'
- **Diaphragm Details, Simple Span L = 40'-70'
- (**) Designer will choose only one that applies.

Design/General Notes:

The design and details are based on AASHTO LRFD Bridge Design Specifications, 8th Edition, with CA Amendments Section 3.10.10 and AISC Steel Construction Manual, 15th Edition. Section 48 of Caltrans Standard Specifications provides information on Temporary Bridge/Structure fabrication and construction. Designers must read this section of the Standard Specifications. Live loads used for design were Strength I (HL-93) and Strength II (P15).

¾" Ø high-strength bolts shall be ASTM F3125 Grade A325X.

Threaded rods and carriage bolts shall be ASTM F1554 A307 Grade 36.

Additional Drawings Needed to Complete PS&E:

General Plan

Deck Contours

Foundation Plan

Log of Test Borings

Contract Specifications:

Caltrans Standard Specifications:

Section 12 Temporary Traffic Control

Section 48 Temporary Structures

Section 57 Wood and Plastic Lumber Structures

Section 55 Steel Structures

Section 75 Miscellaneous Metal

Restrictions on Use of Standard Drawings:

The PE is responsible for applying the pre-designed Table 1 of this User Guide to the bridge and stamping the XS sheets used with a valid California Professional Engineer License Stamp.

Single Span Temporary Bridge abutments were designed using minimum soil bearing

Last revised: 09-19-2025 **2** | P a g e

capacity of 3 ksf for Service Level Load. If project-specific site conditions do not meet the minimum soil bearing capacity, the PE and/or Geoprofessional are responsible for ensuring adequate soil bearing capacity to support the selected single span temporary bridge.

Design calculations were done using 2" average depth of HMA over the timber deck. If project-specific design requires more than 2" average HMA thickness, the PE is responsible for ensuring the temporary bridge design can accommodate project-specific design HMA thickness.

Special Considerations:

Selected design verification calculations are provided in the attached Appendix for single spans up to 70 ft.

Last revised: 09-19-2025 3 | P a g e

APPENDIX

- I. Wood Deck and Calculations for Span L = 20-30 ft
- II. Calculations for Span L = 30-40 ft
- III. Calculations for Span L = 40-50 ft
- IV. Calculations for Span L = 50-60 ft
- V. Calculations Span L = 60-70 ft
- VI. Abutment Calculations Span L = 70 ft

I. Design Verification for Steel Rolled Wide Flange Girders with Timber Decking

Span Length = 20'- 30'
Wide Flange Girder (WFG), Girder spacing, S = 4'-0"
Deck thickness - Timber = 11.5 inch, HMA = Varies

- 1.) Wood Deck Plank Calculations
 - 1.1) Plank Demand
 - 1.2) Plank Capacity
- 2.) Steel Girder Calculations
 - 2.1) Girder Demand
 - 2.2) Girder Capacity
- 3.) Steel Bearing Stiffener Calculations
 - 3.1) Stiffener Demand
 - 3.2) Stiffener Capacity
- 4.) Welded Connection Capacity
- 5.) Bolted Connection Capacity
- 6.) Steel Diaphragm Demand
- 7.) Steel Diaphragm Capacity

Last revised: 09-19-2025 **2** | P a g e

Temporary Bridge Calculations - Single Span, 1 Lane

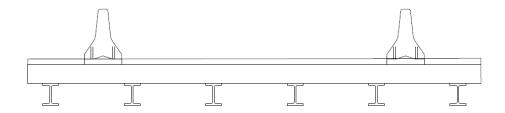


Figure 1 – Typical Section

Materials:

- 12 x 16 Spike Laminated Decking, DFL No.2 or better

[AASHTO Art. 9.9.6]

- Steel Wide Flange Girder
- Temporary Barriers
- HMA Overlay
- Misc. Connection Hardware
- 24 ft total deck width, 6 girders total

1.) Wood Deck Plank Calcs:

1.1) Wood Deck Plank Demand:

Dead Loads (DL):

[AASHTO Table 3.5.1-1]

w1 (Timber Deck) = 0.05 kcf x 1' x 1' = 0.05 klf

w2 (HMA) = 0.14 kcf x (2/12)' x 1' = 0.023 klf

Live Loads (LL, HL93 Transverse):

Assuming simply supported between girders for Live Load

Moment Demand:

$$M_{u_LL} = \frac{PL}{4} = \frac{16 \; kips \; x \; 4 \; ft}{4} = 16 \; kft/plank$$

No need to apply dynamic Load Allowance

[AASHTO Art. 3.6.2.3]

No need to apply lane load

[AASHTO Art. 4.6.2.1.3]

Last revised: 09-19-2025 3 | P a g e

Assumed D_L is applied uniformly over contact area

$$M_{u_{factored}} = \frac{\Sigma \gamma_i w_i L^2}{8} = 1.25 \left(0.05 \ klf \ x \ \frac{4^2 f t^2}{8} \right) + 1.50 \left(0.023 \ klf \ x \ \frac{4^2 f t^2}{8} \right) + 1.75 \left(16 \ kft \right)$$

 $M_{u_factored} = 28.20 \, kft$

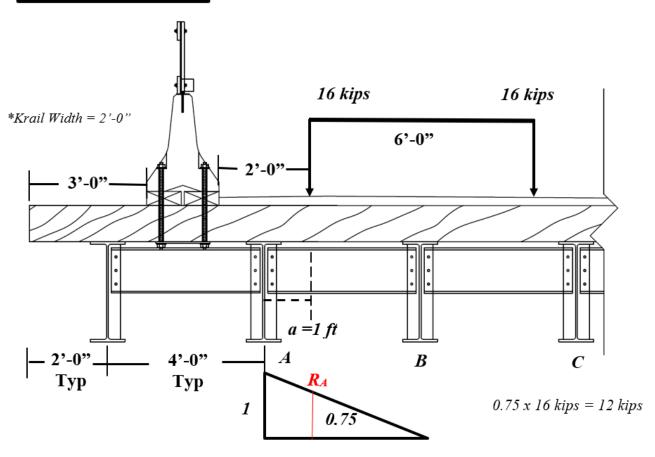


Figure 2 - Part Typical Section, HL-93 Rxn's

From Structural Analysis:

Neglecting LL effect on 1st girder and assuming 2 span 8 ft cont. beam with 2 concentrated loads at "a" $R_A = R_C = 10.12$ kips, $R_B = 11.75$ kips (use 12 kips for shear design, assuming simply supported between girders from influence line R_A)

Shear Demand:

$$V_{u\ LL} = 12\ kips$$

$$V_{u_{factored}} = \Sigma \gamma_i w_i = 1.25 (0.05 \; klf \; x \; 1 \; ft) + 1.50 (0.023 \; klf \; x \; 1 \; ft) + 1.75 \; (12 \; kips)$$

 $V_{u\ factored} = 21.10\ kips$

Last revised: 09-19-2025 **4** | P a g e

1.2) Wood Deck Plank Capacity:

From AASHTO, Ch.8 - Wood Structures:

AASHTO Table 8.5.2.2 – Resistance						
Factors, Ø						
Flexure	0.85					
Shear	0.75					
Compression						
Perpendicular to the Grain	0.90					

Plank Nominal Size (12" x 12"): 11.5" x 11.5"

Species: DFL No. 2 or better

Adjusted Bending Stress Design

$$F_b = F_{bo}C_{KF}C_MC_FC_{fu}C_dC_\lambda$$

$$C_{KF} = \frac{2.5}{\emptyset} = 2.94$$
 for bending and shear (LRFD)

$$C_{KF} = \frac{2.1}{\emptyset} = 2.33$$
 for compression perpendicular to grain (LRFD)

$$F_{bo}C_{KF} = 0.75 \; x \; (\frac{2.5}{0.85} \;) = 2.20 > 1.15, \; C_M = 1.0$$

$$C_F = 1.0$$

$$C_{\mathrm{fu}} = 1.0 \;\; \text{Since Member is > 10" x 10"}$$

$$C_d = 1.0$$

 $F_{bo} = 0.75 \text{ ksi}$

$$C_{\lambda} = 0.80$$
 (Str I)

$$F_b = 0.75 \text{ ksi x } 2.94 \text{ x } 1 \text{ x } 1 \text{ x } 1 \text{ x } 1 \text{ x } 0.80 = \underline{1.76 \text{ ksi}}$$

Adjusted Shear Stress Design

$$F_v = F_{vo}C_{KF}C_MC_\lambda$$
 [AASHTO Art. 8.4.4.1-2]
$$F_{vo} = 0.17 \text{ ksi}$$
 [AASHTO Table 8.4.1.1.4-1]

$$F_v = 0.17 \text{ ksi x } 3.33 \text{ x } 1 \text{ x } 0.80 = \underline{0.45 \text{ ksi}}$$

Adjusted Perpendicular (+) Compression Stress Design

$$F_{cp} = F_{cpo}C_{KF}C_{M}C_{\lambda}$$
 [AASHTO Art. 8.4.4.1-5]
$$F_{cpo} = 0.625 \text{ ksi}$$
 [AASHTO Table 8.4.1.1.4-1]

$$F_{cp} = 0.625 \text{ ksi x } 2.33 \text{ x } 1 \text{ x } 0.80 = \underline{1.17 \text{ ksi}}$$

Nominal Moment Capacity

$$M_r = \emptyset M_n$$
 [AASHTO Art. 8.6.1-1]
 $M_n = F_b S$ [AASHTO Art. 8.6.2-1]

$$S = \frac{bh^2}{6} = \frac{11.5 \times 11.5^2}{6} = 253.28 \ in.^3$$

$$M_r = 0.85 \text{ x } 1.76 \text{ ksi x } 253.28 \text{ in.}^3 = 378.91 \text{ kip*in.} = 31.58 \text{ kip*ft} > 28.20 \text{ kip*ft}$$

Shear Capacity

$$V_r = \emptyset V_n$$
 [AASHTO Art. 8.7-1]

$$V_n = \frac{F_v b d}{1.5}$$
 [AASHTO Art. 8.7-2]

$$V_r = 0.75 x \frac{0.45x11.5x11.5}{1.5} = 29.76 \text{ kips} > 21.10 \text{ kips}$$
 OK

Compressive Capacity – Perpendicular to the Grain

$$P_r = \emptyset P_n$$
 [AASHTO Art. 8.8.1-1]
$$P_n = F_{cpo} A_b C_b$$
 [AASHTO Art. 8.8.3-1]

$$A_b = 11.5$$
" x 6" = 69 in.² (Assuming 6" bearing length)

$$P_r = 0.90 \times 1.17 \text{ ksi } \times 69 \text{ in.}^2 \times 1 = \frac{72.66 \text{ kips}}{2} > 21.10 \text{ kips}$$
 OK

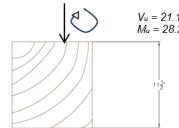


Figure 3 – 12 x 12 Nominal Timber plank

Last revised: 09-19-2025 **6** | P a g e

Span Length = 20'- 30'

2.) Steel Girder Calcs:

2.1) Steel Girder Demand:

Use upper bound of 30' for longitudinal analysis

C-C Girder Spacing = 4'-0"

Total Deck Width = 24'-0"

 L_L Distribution Factor = S/8.3 = 4'/8.3 = 0.48 LL Lanes

[AASHTO Table 4.6.2.2.2a-1]

 $R_A from LL = \frac{0.5(4'-1')}{4} = 0.38 Lanes$, use 0.48 lanes for design

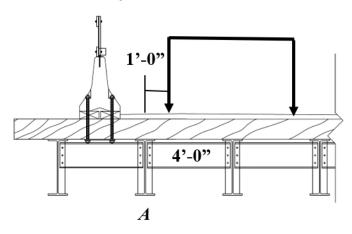


Figure 4 - Live Load Lane Rxn's

Assume an initial depth to span ratio of 0.045

30' x 12"/ft x 0.045 = 16.2" trial Superstructure depth

Demand Calcs:

Dead Loads (D_L):

[AASHTO Table 3.5.1-1]

 W_1 (Timber Deck) = 0.05 kcf x 4' x 1' = 0.2 klf

 w_2 (HMA) = 0.14 kcf x (2/12)' x 4' = 0.093 klf

 K_{rail} = 2 (barriers) x 0.145 kcf x 2.67 ft² x 1/6 (total girders) = 0.13 klf

Assumed Initial Steel Girder Self-Weight = 0.100 klf (conservative since W18x86)

 $D_C = 0.2 + 0.13 + 0.10 = 0.43 \text{ klf}$

 $D_W = 0.093 \text{ klf}$

Live Loads (CTBridge)

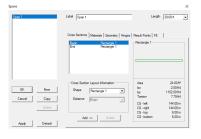


Figure 5 – CTBridge Input

Live Load - Controlling Unfactored Span Forces

LRFD Design Vehicle - Span 1

					Dynamic Load	Allowanc	e (Included)	= 1.3300
Location	# Lanes	MZ+	assoc VY	# Lanes	# Lanes	MZ-	assoc VY	# Lanes
ft		kip·ft	kip			kip·ft	kip	
0.00	0.480	0.00	33.74	0.480	0.480	0.00	0.00	0.480
3.00	0.480	94.16	10.27	0.480	0.480	0.00	0.00	0.480
6.00	0.480	162.57	9.98	0.480	0.480	0.00	0.00	0.480
9.00	0.480	210.97	5.87	0.480	0.480	0.00	0.00	0.480
12.00	0.480	237.47	1.76	0.480	0.480	0.00	0.00	0.480
15.00	0.480	242.04	-4.49	0.480	0.480	0.00	0.00	0.480
18.00	0.480	237.47	-18.18	0.480	0.480	0.00	0.00	0.480
21.00	0.480	210.97	-22.29	0.480	0.480	0.00	0.00	0.480
24.00	0.480	162.57	-26.40	0.480	0.480	0.00	0.00	0.480
27.00	0.480	94.16	-31.16	0.480	0.480	0.00	0.00	0.480
30.00	0.480	0.00	-33.74	0.480	0.480	0.00	0.00	0.480

LRFD Permit Vehicle - Span 1

Dynamic Load Allowance	(Included) = 1.2500	
Dynamic Load Anomanice	(IIIOIdded) — 1.2000	

Location	# Lanes	MZ+	assoc VY	# Lanes	# Lanes	MZ-	assoc VY	# Lanes
ft		kip·ft	kip			kip∙ft	kip	
0.00	0.480	0.00	42.12	0.480	0.480	0.00	0.00	0.480
3.00	0.480	116.64	6.48	0.480	0.480	0.00	0.00	0.480
6.00	0.480	194.40	-0.00	0.480	0.480	0.00	0.00	0.480
9.00	0.480	233.28	-6.48	0.480	0.480	0.00	0.00	0.480
12.00	0.480	233.28	-12.96	0.480	0.480	0.00	0.00	0.480
15.00	0.480	243.00	-16.20	0.480	0.480	0.00	0.00	0.480
18.00	0.480	233.28	-19.44	0.480	0.480	0.00	0.00	0.480
21.00	0.480	233.28	-25.92	0.480	0.480	0.00	0.00	0.480
24.00	0.480	194.40	-32.40	0.480	0.480	0.00	0.00	0.480
27.00	0.480	116.64	-38.88	0.480	0.480	0.00	0.00	0.480
30.00	0.480	0.00	-42.12	0.480	0.480	0.00	0.00	0.480

Figure 6 – CTBridge Output

Moment Demand:

Str I (HL-93) Moment at Midspan (15'), M_u = 242 k*ft

Str II (P15) Moment at Midspan (15'), $M_u = 243 \text{ k*ft}$

Shear Demand:

 $V_{u_str\,l}$ taken at X = 0, V_u = 33.74 kips

 $V_{u \ str II} = 42.12 \text{ kips}$

Last revised: 09-19-2025 **8** | P a g e

Moment Demand:

$$M_{u_{str\,I}} = \frac{\Sigma \gamma_i w_i L^2}{8} = 1.25 \left(0.43 \ klf \ x \ \frac{30^2 f t^2}{8} \right) + 1.50 \left(0.093 \ klf \ x \ \frac{30^2 f t^2}{8} \right) + 1.75 \left(242 \ kft \right)$$
 $M_{u_{str\,I}} = 499.66 \ k - ft$
Controls

$$\begin{split} M_{u_{strII}} &= \frac{\Sigma \gamma_i w_i L^2}{8} = 1.25 \left(0.43 \; klf \; x \; \frac{30^2 f t^2}{8}\right) + 1.50 \left(0.093 \; klf \; x \; \frac{30^2 f t^2}{8}\right) + 1.35 \left(243 \; kft\right) \\ M_{u_{strII}} &= 404.21 \; kft \end{split}$$

Shear Demand:

$$V_{u_{str\,I}} = \Sigma \gamma_i w_i = 1.25 (0.43 \ klf \ x \ 30 \ ft/2) + 1.50 (0.093 \ klf \ x \ 30 \ ft/2) + 1.75 \ (33.74 \ kips)$$

$$V_{u_{str\,I}} = 69.20 \ kips \qquad \qquad Controls$$

$$\begin{split} V_{u_{str\,II}} &= \Sigma \gamma_i w_i = 1.25(0.43 \; klf \; x \; 30 \; ft/2) + 1.50(0.093 \; klf \; x \; 30 \; ft/2) + 1.35 \; (42.12 \; kips) \\ V_{u_{str\,II}} &= 67.02 \; kips \end{split}$$

2.2) Steel Girder Capacity, AISC SCM 15th Edition and AASHTO BDS 8th as applicable:

Z	C	Table 3-2 (continued) W-Shapes Selection by Z _x									<i>F</i> _y = 50 ksi			
		M_{px}/Ω_b	$\phi_b M_{px}$	M_{rx}/Ω_b	$\phi_b M_{rx}$	BF/Ω_b	φ _b BF				V_{nx}/Ω_{y}	$\phi_{\nu}V_{nx}$		
Shape	Zx	kip-ft	kip-ft	kip-ft	kip-ft	kips	kips	Lp	Lr	I _x	kips	kips		
	in.3	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	LRFD		
W30×90"	283	706	1060	428	643	20.6	30.8	7.38	20.9	3610	249	374		
W24×103	280	699	1050	428	643	18.2	27.4	7.03	21.9	3000	270	404		
W21×111	279	696	1050	435	654	12.4	18.9	10.2	31.2	2670	237	355		
W27×94	278	694	1040	424	638	19.1	28.5	7.49	21.6	3270	264	395		
W12×170	275	686	1030	410	617	4.11	6.15	11.4	78.5	1650	269	403		
W18×119	262	654	983	403	606	10.1	15.2	9.50	34.3	2190	249	373		
W14×145	260	649	975	405	609	5.13	7.69	14.1	61.7	1710	201	302		
W24×94	254	634	953	388	583	17.3	26.0	6.99	21.2	2700	250	375		
W21×101	253	631	949	396	596	11.8	17.7	10.2	30.1	2420	214	321		
W27×84	244	609	915	372	559	17.6	26.4	7.31	20.8	2850	246	368		
W12×152	243	606	911	365	549	4.06	6.10	11.3	70.6	1430	238	358		
W14×132	234	584	878	365	549	5.15	7.74	13.3	55.8	1530	190	284		
W18×106	230	574	863	356	536	9.73	14.6	9.40	31.8	1910	221	331		
W24×84	224	559	840	342	515	16.2	24.2	6.89	20.3	2370	227	340		
W21×93	221	551	829	335	504	14.6	22.0	6.50	21.3	2070	251	376		
W12×136	214	534	803	325	488	4.02	6.06	11.2	63.2	1240	212	318		
W14×120	212	529	795	332	499	5.09	7.65	13.2	51.9	1380	171	257		
W18×97	211	526	791	328	494	9.41	14.1	9.36	30.4	1750	199	299		
W24×76	200	499	750	307	462	15.1	22.6	6.78	19.5	2100	210	315		
W16×100	198	494	743	306	459	7.86	11.9	8.87	32.8	1490	199	298		
W21×83	196	489	735	299	449	13.8	20.8	6.46	20.2	1830	220	331		
W14×109	192	479	720	302	454	5.01	7.54	13.2	48.5	1240	150	225		
W18×86	186	464	698	290	436	9.01	13.6	9.29	28.6	1530	177	265		

Figure 7 - AISC SCM 15th (Table 3-2)

 $L_p < L_b \le L_r$ Beam is braced at L/2 = 15 ft

Moment Capacity:

$$\emptyset_b M_n = C_b [\emptyset_b M_{px} - \emptyset_b BF(L_b - L_p)] \le \emptyset_b M_{px}$$
 [AISC SCM 3-4a (LRFD)]

 $C_b = 1.0$ (Conservative)

 $\emptyset_b = 0.90$

 $L_b = 15 \text{ ft}$

 $L_p = 9.29 \text{ ft}$

$$\emptyset_b M_{px} = \emptyset_b F_Y Z_x = 0.90 \text{ x } 50 \text{ ksi x } 186 \text{ in.}^3 = 8,370 \text{ k*in} = 698 \text{ k*ft} \text{ (same as in table)}$$

 $\emptyset_b BF = 13.6 \, kips$

$$\emptyset_b M_n = 1.0[698 - 13.6(15 - 9.29)] = 620 k * ft > 499.66 k * ft$$
 OK

Last revised: 09-19-2025 **10** | P a g e

Alternative Method: Use Table 3-10 for L_b = 15ft and W18x86, $\emptyset_b M_n \sim$ 620 k*ft

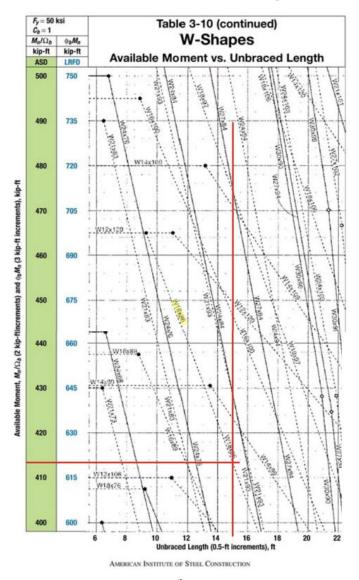


Figure 8 - AISC SCM 15th (Table 3-10)

Shear Capacity:

$$\emptyset_v V_{vx} = 265 \ {\rm kips}$$
 [AISC SCM Table 3-2 (LRFD)] $\emptyset_v V_{vx} \geq V_u \ (69.2 \ {\rm kips})$ OK

Check:

$$\phi_v V_n = 0.58 F_{yw} D t_w$$
 [AASHTO Art. 6.10.9.2-2]

D = 16.86 in. (Web depth)

 $t_{\rm w} = 0.48$

 $\emptyset_{v} = 1.0$

 $\emptyset_v V_n = 1.0 \text{ x } 0.58 \text{ x } 50 \text{ ksi x } 16.86\text{" x } 0.48\text{"} = 234.7 \text{ kips} > V_u \text{ (69.2 kips)}$ OK

Last revised: 09-19-2025 11 | P a g e

3.) Bearing Stiffener Calcs:

3.1) Bearing Stiffener Demand:

$$P_{HL-93 \ Abut} = 55.12 \ kips \times 1.33 \ (IM) = 73.31 \ kips$$

$$P_{u_{str}} = \Sigma \gamma_i w_i = 1.25 (0.43 \; klf \; x \; 30 \; ft/2) + 1.50 (0.093 \; klf \; x \; 30 \; ft/2) + 1.75 \; (\; 73.31 \; kips)$$

 $P_{u_{str\,I}} = 138.45 \, kips$

Controls

$$P_{P15 \ Abut} = 70.20 \ kips \times 1.25 \ (IM) = 87.75 \ kips$$

$$\begin{split} P_{u_{str\,II}} &= \Sigma \gamma_i w_i = 1.25(0.43 \; klf \; x \; 30 \; ft/2) + 1.50(0.093 \; klf \; x \; 30 \; ft/2) + 1.35 \; (87.75 \; kips) \\ P_{u_{str\,II}} &= 128.62 \; kips \end{split}$$

3.2) Bearing Stiffener - Capacity:

(Helps to prevent Local Buckling)

Projecting Width, bt

$$b_t \leq 0.48 t_p \sqrt{\frac{E}{F_{VS}}}$$

[AASHTO Art. 6.10.11.2.2-1]

Try
$$t_p = 3/8$$
" = 0.375":

$$0.48 \times 3/8$$
" $\times \sqrt{\frac{29,000}{50}} = 4.33$ "

Try 4" Plate:

$$(R_{sb})r = \emptyset_b(R_{sb})n$$
 [AASHTO Art. 6.10.11.2.3-1]

 $\phi_b = 1.0$ [AASHTO Art. 6.5.4.2]

$$(R_{sb})n = 1.4A_{pn}F_{ys}$$
 [AASHTO Art. 6.10.11.2.3-2]

 $b_{brg} = 4 - 1$ " (web-flange weld) = 3"

 $\phi_b(R_{sb})n = 1.0 \text{ x } 1.4 \text{ x } 2 \text{ plates per girder x } 3\text{'' x } 3/8\text{'' x } 50 \text{ ksi} = 157.5 \text{ kips}$

$$\emptyset_b(R_{sb})n > 138.45 \, kips$$
 OK

Live Load - Controlling Unfactored Abutment Reactions																			
		LI	RFD Desig	n Vehicle						No Dynamic Load Allowance - Single Lane									
			No Dy	namic Load	Allowance	- Single L	ane			Abutment	# Lanes	MZ+	assoc VY		# Lanes	MZ-	assoc VY		
Abutment	# Lanes	MZ+	assoc VY		#Lanes	MZ-	assoc VY					kip-ft	kip			kip-ft	kip		
		kip-ft	kip			kip-ft	kip			First Abutment	1.000	0.00	70.20		1.000	0.00	0.00		
First Abutment	1.000	0.00	55.12		1.000	0.00	0.00			Last Abutment	1.000	0.00	-70.20		1.000	0.00	0.00		
Last Abutment	1.000	0.00	-55.12		1.000	0.00	0.00												
Abutment	# Lanes	VY+	assoc MZ	assoc TX		# Lanes	VY.	assoc MZ	assoc TX	Abutment	# Lanes	VY+	assoc MZ	assoc TX		# Lanes	VY-	assoc MZ	assoc TX
Abuument	# Lanes	kip	kip-ft	kip-ft		# Lanes	kip	kip-ft	kip-ft			kip	kip-ft	kip-ft			kip	kip·ft	kip·ft
First Abutment	1.000	55.12	0.00	-0.00		1.000	-0.00	0.00	-0.00	First Abutment	1.000	70.20	0.00	-0.00		1.000	-0.00	0.00	-0.00
Last Abutment	1.000	0.00	0.00	0.00		1.000	-55.12	0.00	0.00	Last Abutment	1,000	0.00	0.00	0.00		1.000	-70.20	0.00	0.00
Lux Abdullent	1.000	0.00	0.00	0.00		1.000	-55.12	0.00	0.00										
Abutment	# Lanes	TX+		# Lanes	AX-		# Lanes	TX-		Abutment	# Lanes	TX+		# Lanes	AX-		# Lanes	TX-	
		kip-ft			kip			kip-ft				kip-ft			kip			kip-ft	
First Abutment	1.000	0.00		1.000	0.00		1.000	0.00		First Abutment	1.000	0.00		1.000	0.00		1.000	0.00	
Last Abutment	1.000	0.00		1,000	0.00		1.000	0.00		Last Abutment	1.000	0.00		1.000	0.00		1.000	0.00	
										Lust Abdullelli	1.000	0.00		1.000	0.00		1.000	0.00	

Figure 9 - CTBridge Load Abutment Reactions

Last revised: 09-19-2025 12 | P a g e

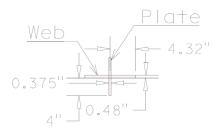


Figure 10 - Bearing Stiffener Effective Dimensions

Check Axial Resistance of Stiffener:

$$P_r = \phi_c P_n$$
 [AASHTO Art. 6.9.2.1-1] $\phi_c = 0.95$ [AASHTO Art. 6.5.4.2]

Effective Plate Width = $4" + 4" + 0.48" (t_w) = 8.48"$

Effective Web Strip =
$$2 \times 9t_w - t_p = 2 \times 9(0.48^\circ) - 3/8^\circ = 8.27^\circ$$
 [AASHTO Art. 6.10.11.2.4b]

$$A_g = (0.375" \times 8.48") + (0.48" \times 8.27") = 7.15 \text{ in.}^2$$

$$I_s = ([0.375" \times (8.48")^3] + [0.48" \times (8.27")^3]) \frac{1}{12} = 41.68 \text{ in.}^4$$

$$r_s = \sqrt{\frac{I_s}{A_g}} = 2.41$$
"

$$KxI = 0.75 \times 16.86$$
" (D_w) = 12.65 in.

$$\frac{k \times l}{r_c} = (0.75 \times 16.86)^2/2.41 = 5.25 \le 120$$
 OK [AASHTO Art. 6.9.3]

Check Critical Buckling Resistance:

$$P_e = \frac{\pi^2 E}{\left(\frac{Kl}{\pi}\right)^2} A_g$$
 [AASHTO Art. 6.9.4.1.2-1]

$$P_e = \frac{\pi^2 x \, 29,000 \, ksi}{(5.25)^2} \, x \, 7.15 \, in.^2 = 74,248 \, \text{kips}$$

$$P_o = F_y A_g$$
 [AASHTO Art. 6.9.4.1.1]

$$P_o = 50 \text{ ksi x } 7.15 \text{ in.}^2 = 357.5 \text{ kips}$$

$$\frac{P_e}{P_o} = \frac{74,248}{357.5} = 207.7 > 0.44$$

$$P_n = 0.658 \frac{P_o}{P_e} P_o$$
 [AASHTO Art. 6.9.4.1.1-1]

$$P_n = 356.8 \text{ kips}$$

$$P_r = \emptyset_c P_n = 0.95 \text{ x } 356.8 \text{ kips} = 338.9 \text{ kips} > 138.45 \text{ kips}$$
 OK

₽ 3/8 x 4 is sufficient for axial loading

Last revised: 09-19-2025 13 | P a g e

4.) Welded Connection - Capacity Calcs

Assume $t_{Weld} = 0.25$ " for initial calculation.

$$R_r = 0.6 \phi_{e1} F_{EXX}$$
 [AASHTO Art. 6.13.3.2.2b-1]

$$\phi_{e1} = 0.80$$
 [AASHTO Art. 6.5.4.2]

 $R_c = 0.60 \times 0.80 \times 70 \text{ ksi} = 33.6 \text{ ksi}$

$$L_{eff} = 4 \times (16.86" - 2") = 59.44"$$
 [AASHTO Art. 6.13.3.6]

Throat_{eff} =
$$\frac{t_{Weld}}{\sqrt{2}}$$
 = 0.18"

$$Area_{eff} = L_{eff} \times Throat_{eff} = 10.51 \text{ in}^2$$
 [AASHTO Art. 6.13.3.3]

Weld Capacity =
$$R_r x$$
 Area_{eff} = 353.06 kips > 138.45 kips OK

For material 0.25" or more in thickness, the maximum size of the fillet weld is 0.0625" less than the materials thickness.

[AASHTO Art. 6.13.3.4]

$$0.375" - 0.0625" = 0.3125" > 0.25"$$
 OK

1/4" Weld is sufficient for factored Abutment reaction.

5.) Bolted Connection - Capacity Calcs

Assume ASTM F3125 Grade A325 high strength 3/4"Ø, threads excluded from the shear plane.

Single Shear

$$R_n = 0.56 A_b F_{ub} N_s = 0.56 \ x \ \pi \ x \left(\frac{0.75''}{2}\right)^2 x \ 120 \ ksi \ x \ 1 = 29.69 \ kips$$
 [AASHTO Art. 6.13.2.7-1]

Use edge distance of 1.5"

$$L_c = 1.5" + 1"(clr) - (0.75"/2) = 2.13"$$

Bearing

$$R_n = 1.2 L_c t F_u = 1.2 \ x \ 2.13 \ x \frac{3}{8}$$
" x 58 ksi = 55.46 kips take as 29.69 kips [AASHTO Art. 6.13.2.9-2]

 $\emptyset R_n = 0.8 \ x \ 29.69 \ kips = 23.75 \ kips$ per bolt, for L connection to web - double shear

Number of bolts =
$$\frac{138.45 \text{ kips}}{2 \text{ x } 23.75 \text{ kips}} = 2.91 \text{ use 3 bolts}$$

6.) Steel Diaphragm - Demand Calcs

Live load reaction taken at midspan (CTBridge)

$$\begin{split} P_{u_{str\,II}} &= \Sigma \gamma_i w_i = 1.25(0.43 \; klf \; x \; 30 \; ft/2) + 1.50(0.093 \; klf \; x \; 30 \; ft/2) + 1.35 \; (16.2 \; kips) \\ P_{u_{str\,II}} &= 32.03 \; kips \end{split}$$

Last revised: 09-19-2025 **14** | P a g e

7.) Steel Diaphragm - Capacity Calcs

Assume trial Channel height, $H = \frac{1}{2}H_{oirder} = \frac{1}{2} \times 18.4^{\circ} = 9.2^{\circ}$

[AASHTO Art. 6.7.4.2]

Try C10x15.3, H = 10":

Check Elastic Torsional Buckling Resistance:

$$A_g = 4.48 in.^2$$
 [AISC SCM Table 1-5]

$$P_e = (\frac{P_{ey} + P_{ez}}{2H})[1 - \sqrt{1 - \frac{4P_{ey}P_{ez}H}{(P_{ey} + P_{ez})^2}}]$$
 [AASHTO Art. 6.9.4.1.1.3.2]

$$r_v = 0.711 \text{ in.}$$
 [AISC SCM Table 1-5]

$$P_{ey} = \frac{\pi^2 E}{\left(\frac{K_y l_y}{r_y}\right)^2} A_g = \frac{\pi^2 x \, 29,000 \, ksi \, x \, 4.48 \, in.^2}{\left(1 \, x \, 4' x \frac{12}{0.711}\right)^2} = \, 281 \, kips \qquad [\text{AASHTO Art. 6.9.4.1.3-4}]$$

$$J = 0.209 \text{ in}^4$$
, $r_o = 4.19 \text{ in.}$, $C_w = 45.5 \text{ in.}^6$, $H = 0.884$ [AISC SCM Table 1-5]

$$P_{ez} = \frac{\left(\frac{\pi^2 E C_w}{(K_z l_z)^2} + GJ\right)}{r_o^2} = \frac{\left[\left(\frac{\pi^2 x \ 29,000 \ ksi \ x \ 45.5}{(1 \ x \ 4'x \ 12)^2}\right) + (0.385 \ x \ 29,000 \ ksi \ x \ 0.209 \ in^4)\right]}{4.19^2 in} = 455 \ kips$$

[AASHTO Art. 6.9.4.1.1]

$$P_{e} = \left(\frac{281 \, kips + 455 \, kips}{2(0.884)}\right) \left[1 - \sqrt{1 - \frac{4 \, x \, 281 \, kips \, x \, 455 \, kips \, x \, 0.884}{(281 \, kips + 455 \, kips)^{2}}}\right] = 68.8 \, kips$$

$$P_o = 50 \text{ ksi } x \text{ 4.48 in.}^2 = 224 \text{ kips}$$

$$\frac{P_e}{P_o} = \frac{68.8 \text{ kips}}{224 \text{ kips}} = 0.31 < 0.44 \text{ c}$$

[AASHTO Art. 6.9.4.1.1-2]

$$\emptyset_c P_n = 0.95 \ x \ 0.877 P_e = 0.95 \ x \ 0.877 \ x \ 68.8 \ kips = 57.3 \ kips > 33.30 \ kips$$

C10x15.3 is sufficient for axial/torsional loading.

II. Design Verification for Steel Rolled Wide Flange Girders with Timber Decking

Span Length = 30'- 40'
Wide Flange Girder (WFG), Girder spacing, S = 4'-0"
Deck thickness - Timber = 11.5 inch, HMA = Varies

1.) Spreadsheet Calculations for L = 40'

Last revised: 09-19-2025 **16** | P a g e

Temp Bridge, Single Span

Girder = W24x104

Span L = 40 ft w1 = 0.2 klfd/s = 0.045 w2 = 0.093 klf

C-C =4 ft LL DF = 0.48 lanes Krail = 0.13 klf SSd=21.6 in SW_{girder} = 0.104 klf Girders $D_{\rm C} =$ 0.434 klf **CTBridge** $D_{W} =$ 0.093 klf

 Str I Moment Midspan =
 348.72 k*ft

 Str II Moment Midspan =
 388.80 k*ft

 Str I Shear @ Abut =
 38.78 kips

 Str II Shear @ Abut =
 48.6 kips

Factored Moment

 $M_{u Str I} = 747 k*ft$ Controls

M_{u Str II} = 661 k*ft Does Not Control

Factored Shear

 $V_{u Str I} = 82 \text{ kips}$ Controls

 $V_{u \text{ Str II}} = 79 \text{ kips}$ Does Not Control

Table 3-2 AISC 15th Brace pt = L/2

Lp = 10.3 ft Lr = 29.2 ft

For 40 ft total length braced at midpoint, Lb = 20 ft

Lp < Lb < Lr

Moment Capacity

 $\emptyset_b M_n = C_b [\emptyset_b M_{px} - \emptyset_b BF(L_b - L_p)] \le \emptyset_b M_{px}$ AISC 15th 3-4a (LRFD)

 $\emptyset_b M_{\rho x} = 1,084 \text{ k*ft}$ $\emptyset_b BF = 21.3 \text{ kips}$ $\emptyset_b M_{\rho} = 877 \text{ k*ft}$ $< \emptyset_b M_{\rho x}$ OK

 $M_n = 877 \text{ k*ft} < \emptyset_b M_{px}$ OK 1.084 k*ft

747 k*ft

Table 3-2 (continued) W-Shapes Selection by Z_x												
	,	M_{px}/Ω_b	$\phi_b M_{px}$	M_{rx}/Ω_b	$\phi_0 M_{rx}$	BF/Ω_b	φ _b BF	,	,	,	$V_{\rm mx}/\Omega_{\rm y}$	φ _ν V _{rtx}
Shape	Zx	kip-ft	kip-ft	kip-ft	kip-ft	kips	kips	Lp	L	I _x	kips	kips
	in.3	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	LRFD
W33×130	467	1170	1750	709	1070	29.3	43.1	8.44	24.2	6710	384	576
W27×146	464	1160	1740	723	1090	19.9	29.5	11.3	33.3	5660	332	497
W18×192	442	1100	1660	664	998	10.6	16.1	9.85	51.0	3870	392	588
W30×132	437	1090	1640	664	998	26.9	40.5	7.95	23.8	5770	373	559
W14×233	436	1090	1640	655	984	5.40	8.15	14.5	95.0	3010	342	514
W21×166	432	1080	1620	664	998	14.2	21.2	10.6	39.9	4280	338	506
W12×252h	428	1070	1610	617	927	4.43	6.68	11.8	114	2720	431	647
W24×146	418	1040	1570	648	974	17.0	25.8	10.6	33.7	4580	321	482
W33×118°	415	1040	1560	627	942	27.2	40.6	8.19	23.4	5900	325	489
W30×124	408	1020	1530	620	932	26.1	39.0	7.88	23.2	5360	353	530
W18×175	398	993	1490	601	903	10.6	15.8	9.75	46.9	3450	356	534
W27×129	395	986	1480	603	906	23.4	35.0	7.81	24.2	4760	337	505
W14×211	390	973	1460	590	887	5.30	7.94	14.4	86.6	2660	308	462
W12×230 ^h	386	963	1450	561	843	4.31	6.51	11.7	105	2420	390	584
W30×116	378	943	1420	575	864	24.8	37.4	7.74	22.6	4930	339	509
W21×147	373	931	1400	575	864	13.7	20.7	10.4	36.3	3630	318	477
W24×131	370	923	1390	575	864	16.3	24.6	10.5	31.9	4020	296	445
W18×158	356	888	1340	541	814	10.5	15.9	9.68	42.8	3060	319	479
W14×193	355	886	1330	541	814	5.30	7.93	14.3	79.4	2400	276	414
W12×210	348	868	1310	510	767	4.25	6.45	11.6	95.8	2140	347	520
W30×108	346	863	1300	522	785	23.5	35.5	7.59	22.1	4470	325	487
W27×114	343	856	1290	522	785	21.7	32.8	7.70	23.1	4080	311	467
W21×132	333	831	1250	515	774	13.2	19.9	10.3	34.2	3220	283	425
W24×117	327	816	1230	508	764	15.4	23.3	10.4	30.4	3540	267	401
W18×143	322	803	1210	493	740	10.3	15.7	9.61	39.6	2750	285	427
W14×176	320	798	1200	491	738	5.20	7.83	14.2	73.2	2140	252	378
W30×99	312	778	1170	470	706	22.2	33.4	7.42	21.3	3990	309	463
W12×190	311	776	1170	459	690	4.18	6.33	11.5	87.3	1890	305	458
W21×122	307	766	1150	477	717	12.9	19.3	10.3	32.7	2960	260	391
W27×102	305	761	1140	466	701	20.1	29.8	7.59	22.3	3620	279	419
W18×130	290	724	1090	447	672	10.2	15.4	9.54	36.6	2460	259	388
W24×104	289	721	1080	451	677	14.3	21.3	100000000000000000000000000000000000000	29.2	3100	241	362

Shear Capacity

Bearing Stiffeners

Abutment Axial Rxn, IM included (CTBridge)

 $P_{y_HL-93} =$ 85 kips $P_{v P15} =$ 101 kips

Factored Axial Demand

 $P_{u_Str I} = 162 \text{ kips}$ $P_{u_Str II} = 150 \text{ kips}$

Controls **Does Not Control**

Bearing Capacity

$$b_t \le 0.48t_p \sqrt{\frac{E}{F_{ys}}}$$

AASHTO BDS 8th 6.10.11.2.2-1

 $t_p = 0.5 \text{ in}$ (1/2")E = 29,000 ksi $F_{vs} = 50 \text{ ksi}$ ~ 5.78 in $(0.48t_p \vee E/F_{VS})$ Try 4" plate

 $\emptyset_b =$ $R_{sbn} = 1.4A_{pn}F_{ys}$ $b_{brg} = 3 \text{ in}$

 $\emptyset_b R_{sbn} = 210 \text{ kips} > P_{u_Str I}$

162 kips

Axial Resistance

 $t_w = 0.5$ in Web thickness $P_r = \emptyset_c P_n$ $\phi_c = 0.95$

Effective Plate Width = $4" + 4" + 0.5" (t_w) =$ 8.5 in

Effective Strip Width = $2 \times 9t_w - t_p = 8.5 \text{ in}$

 $A_g = 8.5 \text{ in}^2$ $I_s = 51.2 \text{ in}^4$ $D_{w} = I = 22.6 \text{ in}$ depth of web

k = 0.75 $r_s = 2.45 \text{ in}$ $k \times l = 16.95 \text{ in}$

 $\frac{k x l}{r_s} = 6.91 \leq$

AASHTO BDS 8th 6.9.3 120 **OK** $P_e = \frac{\pi^2 E}{\left(\frac{kl}{r_s}\right)^2} A_g$ AASHTO BDS 8th 6.9.4.1.2-1

 $P_e = 50,984 \text{ kips}$

$$P_o = F_y A_g$$
 $P_o = 425 \text{ kips}$

$$\frac{P_e}{P_o} = 120 \ge 0.44 \qquad \text{AASHTO BDS 8}^{\text{th}} 6.9.4.1.1-1$$
 $P_n = 0.658 \frac{P_o}{P_e} P_o = 424 \text{ kips}$
 $P_r = \emptyset_c P_n = 402 \text{ kips} > 162 \text{ kips} \text{ OK}$

Welded Connection

Assume
$$t_{weld} = 0.25$$
 in $R_r = 0.6 \phi_{e1} F_{EXX}$ $F_{EXX} = 70$ ksi $\phi_{e1} = 0.8$ $R_r = 33.6$ ksi $E_{eff} = 4 \times (22.6 \text{ in - 2 in}) = 82.4 \text{ in}$ $E_{eff} = \frac{t_{weld}}{\sqrt{2}} = 0.18 \text{ in}$ Throat $E_{eff} = \frac{t_{weld}}{\sqrt{2}} = 14.6 \text{ in}^2$ $E_{r} \times A_{eff} = 489.43 \text{ kips}$ $E_{r} \times A_{eff} = 489.43 \text{ kips}$

Bolted Connection

Assume ASTM F3125 Grade A325 High Stength 3/4" Ø, threads excluded from the shear plane

F
$$_{ub}$$
 = 120 ksi
Single Shear A_b = 0.44 in²
 $R_n = 0.56A_bF_{ub}N_s$ = 29.69 kips
 $L_c = 1.5\ in + 1"\ (clr) - (0.75\ in/2)$ = 2.13 in

Bearing
$$F_u = 58 \text{ ksi}$$
 $t = 0.5 \text{ in}$ $R_n = 1.2L_c t F_u = 73.95 \text{ kips}$

take as the lesser 29.69 kips

$$\emptyset$$
 = 0.8
 $\emptyset R_n$ = 23.75 kips per bolt
Abutment Rxn = 162 kips

Number of Bolts =
$$\frac{63.76}{2x \ 23.75}$$
 = 3.41 use 4 bolts

Diaphragm

Assume trial Channel size = 1/2H_{qirder} = 12.05 in

Try C15x33.9

Torsional Buckling Resistance

$$A_g = 10 \text{ in}^2 k_y = 1$$
 AISC SCM Table 1-5 $r_y = 0.901 \text{ in} l_y = 48 \text{ in}$ (4 ft girder spacing)

$$P_{ey} = \frac{\pi^2 E}{\left(\frac{k_y l_y}{r_y}\right)^2} A_g = 1,008 \text{ kips}$$
 AASHTO BDS 8th 6.9.4.1.3-4 AISC SCM Table 1-5

$$J = 1.01 \text{ in}^4 \qquad r_o = 5.94 \text{ in} \qquad C_w = 358 \text{ in}^6$$

$$H = 0.92$$

$$P_{ez} = \frac{\left(\frac{\pi^2 E C_w}{(K_z l_z)^2}\right) + GJ}{r_o^2} = 1,580 \text{ kips}$$
 AASHTO BDS 8th 6.9.4.1.1 AASHTO BDS 8th 6.9.4.1.1.3.2
$$P_e = (\frac{P_{ey} + P_{ez}}{2H})[1 - \sqrt{1 - \frac{4P_{ey}P_{ez}H}{(P_{ey} + P_{ez})^2}} = 910 \text{ kips}$$

$$P_o = F_y A_g = 500 \text{ kips}$$

$$\frac{P_e}{P_o} = 1.82 > 0.44$$

Therefore

$$P_n = 0.658^{\frac{P_o}{P_e}}P_o = 397 \text{ kips}$$

$$\emptyset_c = 0.95$$

$$\emptyset_c P_n = 377 \text{ kips} > 38 \text{ kips}$$
OK

Factored Axial load at Midspan

HL-93 P15 $P_{u Str I} =$ 38 kips Controls 14.1 kips 16.2 kips 36 kips $P_{u Str II} =$ **Does Not Control**

III. Design Verification for Steel Rolled Wide Flange Girders with Timber Decking

Span Length = 40'- 50'
Wide Flange Girder (WFG), Girder spacing, S = 4'-0"
Deck thickness - Timber = 11.5 inch, HMA = Varies

1.) Spreadsheet Calculations for L = 50'

Last revised: 09-19-2025 **22** | P a g e

Temp Bridge, Single Span

Girder = W33x130

Span L = 50 ft w1 = 0.2 klf d/s = 0.045 w2 = 0.093 klf

C-C = 4 ft

LL DF = 0.48 lanes Krail = 0.13 klf SS d = 27 in SW_{girder} = 0.13 klf

Girders $D_C =$ 0.46 klfCTBridge $D_W =$ 0.093 klf

 Str I Moment Midspan =
 491.81 k*ft

 Str II Moment Midspan =
 631.80 k*ft

 Str I Shear @ Abut =
 43.28 kips

 Str II Shear @ Abut =
 58.97 kips

Factored Moment

 $M_{u Str I} = 1084 k*ft$ Controls

 $M_{u Str II} = 1076 \text{ k*ft}$ Does Not Control

Factored Shear

 $V_{u_Str I} = 94 \text{ kips}$ Does Not Control

 $V_{u_Str | II} = 97 \text{ kips}$ Controls

Table 3-2 AISC 15th Brace pt = L/3

Lp = 8.44 ft Lr = 24.2 ft

For 50 ft total length braced at L/3, Lb = 16.7 ft

Lp < Lb < Lr

Moment Capacity

 $\emptyset_b M_n = C_b [\emptyset_b M_{px} - \emptyset_b BF(L_b - L_p)] \le \emptyset_b M_{px}$ AISC 15th 3-4a (LRFD)

 $C_b = 1$ $F_y = 50$ ksi $\emptyset_b = 0.9$ $Z_x = 467$ in^3

 $Ø_b M_{px} = 1,751 \text{ k*ft}$ $Ø_b BF = 43.1 \text{ kips}$

 $\emptyset_b M_n = 1{,}397 \text{ k*ft} < \emptyset_b M_{px}$ OK

1,751 k*ft

 $> M_{u_StrI}$ OK

1084 k*ft

$F_{\nu} = 5$	0 40		7	Table W		(con		ed)			Z	•
$r_y = 5$	U KS											'x
				Se	lecti	on b	$y Z_x$					
	_	M_{px}/Ω_b	фьМрх	M_{rx}/Ω_b	Φ _b M _{rx}	BF/Ω _b	φ _b BF				V_{nx}/Ω_{v}	φ _ν V _m
Shape	Zx	kip-ft	kip-ft	kip-ft	kip-ft	kips	kips	Lp	Lr	I _x	kips	kips
	in.3	ASD	LRFD	ASD	LRFD	ASD	LRFD	ft	ft	in.4	ASD	LRFD
W33×130	467	1170	1750	709	1070	29.3	43.1	8.44	24.2	6710	384	576
W27×146	464	1160	1740	723	1090	19.9	29.5	11.3	33.3	5660	332	497
W18×192	442	1100	1660	664	998	10.6	16.1	9.85	51.0	3870	392	588
W30×132	437	1090	1640	664	998	26.9	40.5	7.95	23.8	5770	373	559
W14×233	436	1090	1640	655	984	5.40	8.15	14.5	95.0	3010	342	514
W21×166	432	1080	1620	664	998	14.2	21.2	10.6	39.9	4280	338	506
W12×252h	428	1070	1610	617	927	4.43	6.68	11.8	114	2720	431	647
W24×146	418	1040	1570	648	974	17.0	25.8	10.6	33.7	4580	321	482
W33×118°	415	1040	1560	627	942	27.2	40.6	8.19	23.4	5900	325	489
W30×124	408	1020	1530	620	932	26.1	39.0	7.88	23.2	5360	353	530
W18×175	398	993	1490	601	903	10.6	15.8	9.75	46.9	3450	356	534
W27×129	395	986	1480	603	906	23.4	35.0	7.81	24.2	4760	337	505
W14×211	390	973	1460	590	887	5.30	7.94	14.4	86.6	2660	308	462
W12×230 ^h	386	963	1450	561	843	4.31	6.51	11.7	105	2420	390	584
W30×116	378	943	1420	575	864	24.8	37.4	7.74	22.6	4930	339	509
W21×147	373	931	1400	575	864	13.7	20.7	10.4	36.3	3630	318	477
W24×131	370	923	1390	575	864	16.3	24.6	10.5	31.9	4020	296	445
W18×158	356	888	1340	541	814	10.5	15.9	9.68	42.8	3060	319	479
W14×193	355	886	1330	541	814	5.30	7.93	14.3	79.4	2400	276	414
W12×210	348	868	1310	510	767	4.25	6.45	11.6	95.8	2140	347	520
W30×108	346	863	1300	522	785	23.5	35.5	7.59	22.1	4470	325	487
W27×114	343	856	1290	522	785	21.7	32.8	7.70	23.1	4080	311	467
W21×132	333	831	1250	515	774	13.2	19.9	10.3	34.2	3220	283	425
W24×117	327	816	1230	508	764	15.4	23.3	10.4	30.4	3540	267	401
W18×143	322	803	1210	493	740	10.3	15.7	9.61	39.6	2750	285	427
W14×176	320	798	1200	491	738	5.20	7.83	14.2	73.2	2140	252	378
W30×99	312	778	1170	470	706	22.2	33,4	7.42	21.3	3990	309	463
W12×190	311	776	1170	459	690	4.18	6.33	11.5	87.3	1890	305	458
W21×122	307	766	1150	477	717	12.9	19.3	10.3	32.7	2960	260	391
W27×102	305	761	1140	466	701	20.1	29.8	7.59	22.3	3620	279	419
W18×130	290	724	1090	447	672	10.2	15.4	9.54	36.6	2460	259	388
W24×104	289	721	1080	451	677	14.3	21.3	10.3	29.2	3100	241	362

Shear Capacity

$$\emptyset_v V_{vx=}$$
 576 kips AISC 15th Table 3-2 (LRFD) $V_u = 97$ kips $\emptyset_v V_{vx} > V_u$ $\emptyset_v = 1$ $\emptyset_v V_n = 0.58 F_{yw} Dt_w = 557$ kips ≥ 97 kips OK AASHTO BDS 8th 6.10.9.2-2

Last revised: 09-19-2025 **24** | P a g e

Bearing Stiffeners

Abutment Axial Rxn, IM included (CTBridge)

 $P_{y_{L-93}} =$ 95 kips $P_{v P15} =$ 123 kips

Factored Axial Demand

 $P_{u_Str I} = 185 \text{ kips}$ $P_{u_Str II} = 184 \text{ kips}$

Does Not Control

Controls

Bearing Capacity

$$b_t \leq 0.48 t_p \sqrt{\frac{E}{F_{ys}}}$$

AASHTO BDS 8th 6.10.11.2.2-1

 $t_p = 0.5 \text{ in}$ (1/2")

E = 29,000 ksi $F_{vs} = 50 \text{ ksi}$

 \sim 5.78 in (0.48t $_{p} \vee E/F_{vs}$) Try 4" plate

 $\emptyset_b =$

 $R_{sbn} = 1.4A_{pn}F_{ys}$ $b_{brg} = 3 \text{ in}$

 $\emptyset_b R_{sbn} = 210 \text{ kips} > P_{u_Strl}$

185 kips

Axial Resistance

 $P_r = \emptyset_c P_n$

 $t_w = 0.58 \text{ in}$

Web thickness

8.58 in

 $\phi_c = 0.95$

Effective Plate Width =

 $4" + 4" + 0.58" (t_w) =$ $2 \times 9t_w - t_p = 9.94 \text{ in}$

Effective Strip Width =

 $A_g = 10.055 \text{ in}^2$

 $D_{\rm w} = I = 22.6 \text{ in}$ depth of web

73.8 in⁴ $I_s =$

k = 0.75

 $r_s = 2.71 \text{ in}$ $k \times l = 16.95 \text{ in}$

 $\frac{k x l}{r_{\rm s}} = 6.26 \leq$

120 OK

AASHTO BDS 8th 6.9.3

 $P_e = \frac{\pi^2 E}{\left(\frac{kl}{r_s}\right)^2} A_g$

AASHTO BDS 8th 6.9.4.1.2-1

 $P_e = 73,508 \text{ kips}$

$$P_o = F_y A_g$$

 $P_o = 502.76 \text{ kips}$

$$\frac{P_e}{P_o}$$
 = 146 \geq 0.44 AASHTO BDS 8th 6.9.4.1.1-1

$$P_n = 0.658^{\frac{P_o}{P_e}} P_o =$$
 501 kips $P_r = \emptyset_c P_n =$ 476 kips > 185 kips OK

Welded Connection

Assume
$$t_{weld} = 0.25$$
 in $R_r = 0.6\phi_{e1}F_{EXX}$ $F_{EXX} = 70$ ksi $\phi_{e1} = 0.8$ $R_r = 33.6$ ksi $E_{eff} = 4 \times (31.4 \text{ in - 2 in}) = 117.56 \text{ in}$ $E_{eff} = \frac{t_{weld}}{\sqrt{2}} = 0.18 \text{ in}$ Throat $E_{eff} = \frac{t_{weld}}{\sqrt{2}} = 0.18 \text{ in}$ Throat $E_{eff} = E_{eff} \times T_{eff} = 20.8 \text{ in}^2$ $E_{eff} \times T_{eff} = 698.27 \text{ kips}$ $E_{eff} \times T_{eff} = 0.18 \text{ kips}$

Bolted Connection

Assume ASTM F3125 Grade A325 High Stength 3/4" \emptyset , threads excluded from the shear plane

$$F_{ub} = 120 \text{ ksi}$$

 $A_b = 0.44 \text{ in}^2$

Single Shear

$$R_n = 0.56 A_b F_{ub} N_s =$$
 29.69 kips

$$L_c = 1.5 \ in + 1" \ (clr) - (0.75 \ in/2) =$$
 2.13 in Bearing $F_u =$ 58 ksi t = 0.5 in

 $R_n = 1.2L_c t F_u = 73.95 \text{ kips}$

take as the lesser 29.69 kips

$$\emptyset R_n = 23.75 \text{ kips}$$
 per bolt

Abutment Rxn = 185 kips

Number of Bolts =
$$\frac{185}{2x 23.75}$$
 = 3.89 use 4 bolts

Diaphragm

Assume trial Channel size = 1/2H_{airder} = 16.55 in

Try MC18x42.7

Torsional Buckling Resistance

$$A_g =$$

$$k_y =$$

$$r_v =$$

sional Buckling Resistance
$$= 12.6 \text{ in}^2 \qquad k_y = 1 \qquad \text{AISC SCM Table 1-5} \\ 1.07 \text{ in} \qquad l_y = 48 \text{ in} \qquad (4 \text{ ft girder spacing})$$

$$P_{ey} = \frac{\pi^2 E}{\left(\frac{k_y l_y}{r_y}\right)^2} A_g = 1,792 \text{ kips} \qquad \text{AASHTO BDS 8}^{\text{th}} 6.9.4.1.3-4$$
 AISC SCM Table 1-5

J =

1.23 in⁴
$$r_0 = 6.97$$
 in

$$C_w = 852 \text{ in}^6$$

H = 0.93

$$P_{ez} = \frac{\left(\frac{\pi^2 E C_w}{(K_z l_z)^{\wedge 2}}\right) + GJ}{r_o^2} = 2,461 \text{ kips}$$
 AASHTO BDS 8^{th} 6.9.4.1.1

$$P_e = (\frac{P_{ey} + P_{ez}}{2H})[1 - \sqrt{1 - \frac{4P_{ey} P_{ez} H}{(P_{ey} + P_{ez})^{\wedge 2}}} = 1589 \text{ kips}$$

$$P_o = F_y A_g = 630 \text{ kips}$$

$$\frac{P_e}{P_o} = 2.52 > 0.44$$

AASHTO BDS 8th 6.9.4.1.1.3.2

Therefore
$$P_n = 0.658 \frac{P_o}{P_e} P_o = 534 \text{ kips}$$

$$\phi_c = 0.95$$

$$\phi_c P_n =$$
 507 kips

See below for demand HL-93

Controlling Factored Axial load at L/3

$$P_{u_Str I} = P_{u_Str II} =$$

33.7 kips

P15

IV. Design Verification for Steel Rolled Wide Flange Girders with Timber Decking

Span Length = 50'- 60'
Wide Flange Girder (WFG), Girder spacing, S = 4'-0"
Deck thickness - Timber = 11.5 inch, HMA = Varies

1.) Spreadsheet Calculations for L = 60'

Last revised: 09-19-2025 **28** | P a g e

Temp Bridge, Single Span

Girder = W36x160

Span L =	60 ft	w1 =	0.2 klf	$t_f =$	1.02 in
d/s =	0.045	w2 =	0.093 klf	d =	36 in

C-C =4 ft

Str I Moment Midspan = 648.96 k*ft Str II Moment Midspan = 874.80 k*ft 46.19 kips Str I Shear @ Abut = Str II Shear @ Abut = 66.96 kips

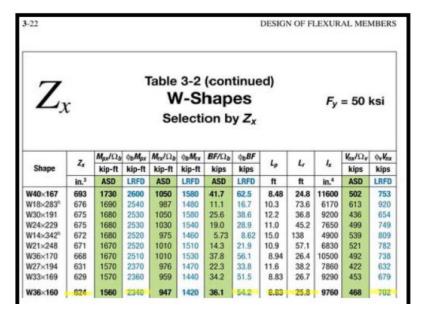
Factored Moment

$M_{u_Str I} =$	1474 k*ft	Does Not Control
$M_{u Str II} =$	1519 k*ft	Controls

Factored Shear

$$V_{u_Str I} = 103 \text{ kips}$$
 Does Not Control $V_{u_Str II} = 113 \text{ kips}$ Controls

Table 3-2 AISC 15th Brace pt = L/3


For 60 ft total length braced at L/3, Lb = 20.0 ft

Lp Lb Lr

Moment Capacity

$$\emptyset_b M_n = C_b [\emptyset_b M_{px} - \emptyset_b BF(L_b - L_p)] \le \emptyset_b M_{px}$$
 AISC 15th 3-4a (LRFD)

$$C_b = 1$$
 $F_y = 50$ ksi $Z_x = 624$ in³ $Z_x = 624$ in³ $Z_x = 624$ in³ $Z_x = 624$ kips $Z_x = 624$

Shear Capacity

$$\emptyset_v V_{vx} = 702 \text{ kips}$$
 AISC 15^{th} Table 3-2 (LRFD) $V_u = 113 \text{ kips}$ $\emptyset_v V_{vx} > V_u$ $\emptyset_v = 1$ $\emptyset_v V_n = 0.58 F_{yw} Dt_w = 640$ $kips \ge 113$ kips OK AASHTO BDS 8th 6.10.9.2-2

Bearing Stiffeners

Abutment Axial Rxn, IM included (CTBridge)

 $P_{y_{L}-93} = 102 \text{ kips}$ $P_{v_{P15}} = 140 \text{ kips}$

Factored Axial Demand

 $P_{u_Str I}$ = 202 kips Does Not Control $P_{u_Str II}$ = 211 kips Controls

Bearing Capacity

$$b_{t} \leq 0.48t_{p} \sqrt{\frac{E}{F_{ys}}} \hspace{1cm} \text{AASHTO BDS 8}^{\text{th}} \hspace{1cm} 6.10.11.2.2-1$$

$$t_{p} = \hspace{1cm} 0.5 \hspace{1cm} \text{in} \hspace{1cm} (1/2")$$

$$E = \hspace{1cm} 29,000 \hspace{1cm} \text{ksi}$$

$$F_{ys} = \hspace{1cm} 50 \hspace{1cm} \text{ksi}$$

$$\sim \hspace{1cm} 5.78 \hspace{1cm} \text{in} \hspace{1cm} (0.48t_{p} \hspace{1cm} v \hspace{1cm} E/F_{ys})$$

$$\hspace{1cm} \text{Try 4" plate}$$

$$\emptyset_{b} = \hspace{1cm} 1$$

$$R_{sb \hspace{1cm} n} = \hspace{1cm} 1.4A_{pn} F_{ys}$$

$$b_{brg} = \hspace{1cm} 3 \hspace{1cm} \text{in}$$

$$\emptyset_{b} R_{sb \hspace{1cm} n} = \hspace{1cm} 210 \hspace{1cm} \text{kips} \hspace{1cm} > \hspace{1cm} P_{u_\text{Str I}} \hspace{1cm} \text{OK}$$

$$\hspace{1cm} 202 \hspace{1cm} \text{kips}$$

Last revised: 09-19-2025

Axial Resistance

$$P_r = \emptyset_c P_n$$
 $t_w = 0.65$ in Web thickness $\emptyset_c = 0.95$

Effective Plate Width =
$$4" + 4" + 0.65" (t_w) = 8.65 in$$

Effective Strip Width =
$$2 \times 9t_w - t_p = 11.2 \text{ in}$$

$$A_g = 11.605 \text{ in}^2$$
 $D_w = I = 33.96 \text{ in}$ depth of web $I_s = 103.1 \text{ in}^4$ $k = 0.75$

$$r_s = 2.98 \text{ in}$$

 $k \times l = 25.47 \text{ in}$

$$\frac{k \, x \, l}{r_{s}} = 8.55 \leq 120$$
 OK AASHTO BDS 8^{th} 6.9.3 $P_{e} = \frac{\pi^{2} E}{\left(\frac{k l}{r_{s}}\right)^{2}} A_{g}$ AASHTO BDS 8^{th} 6.9.4.1.2-1

$$P_e = 45,474 \text{ kips}$$

$$P_o = F_y A_g$$

 $P_o = 580.25 \text{ kips}$

$$\frac{P_e}{P_o}$$
 = 78 \geq 0.44 AASHTO BDS 8th 6.9.4.1.1-1

$$P_n = 0.658^{\frac{P_o}{P_e}} P_o =$$
 577 kips $P_r = \emptyset_c P_n =$ 548 kips > 211 kips OK

Welded Connection

Assume
$$t_{weld} = 0.25$$
 in $R_r = 0.6 \emptyset_{e1} F_{EXX}$ $F_{EXX} = 70$ ksi $\emptyset_{e1} = 0.8$ $R_r = 33.6$ ksi $L_{eff} = 4 \times (33.96 \text{ in - 2 in}) = 127.84 \text{ in}$ $T_{eff} = \frac{t_{weld}}{\sqrt{2}} = 0.18 \text{ in}$ Throat $A_{eff} = L_{eff} x T_{eff} = 22.6 \text{ in}^2$ $R_r x A_{eff} = 759.33 \text{ kips} > 211 \text{ kips}$

Bolted Connection

Assume ASTM F3125 Grade A325 High Stength 3/4" \emptyset , threads excluded from the shear plane

OK

$$F_{ub} = 120 \text{ ksi}$$

 $A_b = 0.44 \text{ in}^2$

Single Shear

$$A_b = 0.44 \text{ in}$$

$$R_n = 0.56 A_b F_{ub} N_s =$$
 29.69 kips

$$L_c = 1.5 in + 1" (clr) - (0.75 in/2) =$$
 2.13 in

Bearing

$$F_u = 58 \text{ ksi} \qquad t =$$

$$R_n = 1.2L_c t F_u = 73.95 \text{ kips}$$

take as the lesser 29.69 kips

$$\emptyset R_n = 23.75 \text{ kips}$$
 per bolt

Abutment Rxn = 211 kips

Multiply resistance by 2 since angle is in double shear

Number of Bolts =
$$\frac{211}{2x \ 23.75}$$
 = 4.44 use 5 bolts

Diaphragm

Assume trial Channel size = 1/2H_{oirder} = 18 in

Try MC18x42.7

Torsional Buckling Resistance

$$A_{a} = 12.6 \text{ in}$$

$$k_y =$$

$$I_y =$$

$$A_g = 12.6 \text{ in}^2 \qquad k_y = 1$$
 AISC SCM Table 1-5 $r_y = 1.07 \text{ in} \qquad l_y = 48 \text{ in} \qquad (4 \text{ ft girder spacing})$

$$P_{ey} = \frac{\pi^2 E}{\left(\frac{k_y l_y}{r_y}\right)^2} A_g = 1,792 \text{ kips}$$
 AASHTO BDS 8th 6.9.4.1.3-4

$$(r_y)$$
 AISC SCM Table 1-5
J = 1.23 in⁴ r_o = 6.97 in C_w = 852 in⁶

AISC SCM Table 1-5
$$C_{-} = 852 \text{ in}^{6}$$

$$P_{ez} = \frac{\left(\frac{\pi^2 E C_w}{(K_z l_z)^2}\right) + GJ}{r_o^2} =$$

$$P_{ez} = \frac{1.23 \text{ in}^4}{r_0} = \frac{6.97 \text{ in}}{r_0} = \frac{6.97 \text{ in}}{r_0} = \frac{852 \text{ in}^6}{r_0} = \frac{0.93}{r_0^2} = \frac{2,461 \text{ kips}}{r_0^2} = \frac{2,461 \text{$$

$$P_o = F_v A_a =$$

$$P_o = F_y A_g =$$
 630 kips
$$\frac{P_e}{P_o} =$$
 2.52 > 0.44

Therefore
$$P_n = 0.658 \frac{P_o}{P_e} P_o = 534 \text{ kips}$$

$$\phi_c = 0.95$$

$$\phi_c P_n = 507 \text{ kips}$$

See below for demand

Controlling Factored Axial load at L/3

$$P_{u_Str I} = 73 \text{ kips}$$

$$P_{u Str II} = 75 kips$$

Does Not Control

V. Design Verification for Steel Rolled Wide Flange Girders with Timber Decking

Span Length = 60'- 70'
Wide Flange Girder (WFG), Girder spacing, S = 4'-0"
Deck thickness - Timber = 11.5 inch, HMA = Varies

1.) Spreadsheet Calculations for L = 70'

Last revised: 09-19-2025 33 | P a g e

Temp Bridge, Single Span

Girder = W36x194

Span L =	70 ft	w1 =	0.2 klf	$t_f =$	1.26 in
d/s =	0.045	w2 =	0.093 klf	d =	36.5 in

C-C = 4 ft

 Str I Moment Midspan =
 813.79 k*ft

 Str II Moment Midspan =
 1127.52 k*ft

 Str I Shear @ Abut =
 49.17 kips

 Str II Shear @ Abut =
 76.37 kips

Factored Moment

 $M_{u_Str I} = 1911 \text{ k*ft}$ Does Not Control $M_{u_Str II} = 2009 \text{ k*ft}$ Controls

Factored Shear

V_{u_Str I} = 114 kips Does Not Control

 $V_{u \text{ Str II}} = 131 \text{ kips}$ Controls

Table 3-2 AISC 15th Brace pt = L/4

Lp = 9.04 ft Lr = 27.6 ft

For 70 ft total length braced at L/4, Lb = 17.5 ft

Lp < Lb < Lr

Moment Capacity

 $\emptyset_b M_n = C_b [\emptyset_b M_{px} - \emptyset_b BF(L_b - L_p)] \le \emptyset_b M_{px}$ AISC 15th 3-4a (LRFD)

 $C_b =$ $F_y =$ ksi 1 50 in^3 $\emptyset_b =$ $Z_x = 767$ 0.9 $\emptyset_b M_{px} = 2,876 \text{ k*ft}$ $\emptyset_bBF =$ 61.4 kips $\emptyset_b M_n = 2,357 \text{ k*ft}$ $\emptyset_b M_{px}$ < OK 2,876 k*ft

 $M_{u_Str I}$ OK 2009 k*ft

			Table 3-2 (continued) W-Shapes Selection by Z_x								Z	x													
Shape	Z _x	M_{px}/Ω_b kip-ft ASD	φ _b M _{px} kip-ft LRFD	M _{rx} /Ω _b kip-ft ASD	φ _B M _{rx} kip-ft LRFD	BF/Ω _b kips ASD	φ _b BF kips LRFD	L _p	L _r	I _x	V_{ms}/Ω_{ν} kips ASD	φ _ν V _m kips													
													W40×215	964	2410	3620	1500	2250	39.4	59.3	12.5	35.6	16700	507	761
													W36×231	963	2400	3610	1490	2240	35.7	53.7	13.1	38.6	15600	555	832
W30×261	943	2350	3540	1450	2180	29.1	44.0	12.5	43.4	13100	588	882													
W33×241	940	2350	3530	1450	2180	33.5	50.2	12.8	39.7	14200	568	852													
W36×232	936	2340	3510	1410	2120	44.8	67.0	9.25	30.0	15000	646	968													
W27×281	936	2340	3510	1420	2140	24.8	36.9	12.0	49.1	11900	621	932													
W14×455 ^b	936	2340	3510	1320	1980	6.24	9.36	15.5	179	7190	768	1150													
W24×306 th	922	2300	3460	1380	2070	19.7	29.8	11.3	57.9	10700	683	1020													
W40×211	906	2260	3400	1370	2060	48.6	73.1	8.87	27.2	15500	591	887													
W40×199	869	2170	3260	1340	2020	37.6	56.1	12.2	34.3	14900	503	755													
W14×426 ^h	869	2170	3260	1230	1850	6.16	9.23	15.3	168	6600	703	1050													
W33×221	857	2140	3210	1330	1990	31.8	47.8	12.7	38.2	12900	525	788													
W27×258	852	2130	3200	1300	1960	24.4	36.5	11.9	45.9	10800	568	853													
W30×235	847	2110	3180	1310	1960	28.0	42.7	12.4	41.0	11700	520	779													
W24×279 ^h	835	2080	3130	1250	1880	19.7	29.6	11.2	53.4	9600	619	929													
W36×210	833	2080	3120	1260	1890	42.3	63.4	9.11	28.5	13200	609	914													
W14×398 ^h	801	2000	3000	1150	1720	5.95	8.96	15.2	158	6000	648	972													
W40×183	774	1930	2900	1180	1770	44.1	66.5	8.80	25.8	13200	507	761													
W33×201	773	1930	2900	1200	1800	30.3	45.6	12.6	36.7	11600	482	723													
W27×235	772	1930	2900	1180	1780	24.1	36.0	11.8	42.9	9700	522	784													
W36×194	767	1910	2880	1160	1740	40.4	61.4	9.04	27.6	12100	558	838													

Shear Capacity

 $\emptyset_v V_{vx}=$ 838 kips AISC 15th Table 3-2 (LRFD) $V_u=$ 131 kips $\emptyset_v V_{vx}>V_u$ $\emptyset_v=$ 1 $\emptyset_v V_n=0.58 F_{yw} Dt_w=$ 754 kips \geq 131 kips OK AASHTO BDS 8th 6.10.9.2-2

Bearing Stiffeners

Abutment Axial Rxn, IM included (CTBridge)

 $P_{y_HL-93} = 110 \text{ kips}$ $P_{y_P15} = 159 \text{ kips}$

Factored Axial Demand

P_{u_Str I} = 220 kips Does Not Control

 $P_{u_Str | I} = 243 \text{ kips}$ Controls

Last revised: 09-19-2025 **35** | P a g e

Bearing Capacity

$$b_{t} \leq 0.48t_{p} \sqrt{\frac{E}{F_{ys}}} \hspace{1cm} \text{AASHTO BDS 8}^{\text{th}} \hspace{1cm} 6.10.11.2.2-1$$

$$t_{p} = \hspace{1cm} 0.625 \hspace{1cm} \text{in} \hspace{1cm} (1/2")$$

$$E = \hspace{1cm} 29,000 \hspace{1cm} \text{ksi}$$

$$F_{ys} = \hspace{1cm} 50 \hspace{1cm} \text{ksi}$$

$$\sim \hspace{1cm} 7.22 \hspace{1cm} \text{in} \hspace{1cm} (0.48t_{p} \hspace{1cm} v \hspace{1cm} E/F_{ys})$$

$$\hspace{1cm} \text{Try 4" plate}$$

$$\emptyset_{b} = \hspace{1cm} 1$$

$$R_{sb \hspace{1cm} n} = \hspace{1cm} 1.4A_{pn} F_{ys}$$

$$b_{brg} = \hspace{1cm} 3 \hspace{1cm} \text{in}$$

$$\emptyset_{b} R_{sb \hspace{1cm} n} = \hspace{1cm} 262.5 \hspace{1cm} \text{kips} \hspace{1cm} > \hspace{1cm} P_{u_Str \hspace{1cm} 1} \hspace{1cm} \text{OK}$$

$$\hspace{1cm} 220 \hspace{1cm} \text{kips}$$

Axial Resistance

Last revised: 09-19-2025

Welded Connection

Assume
$$t_{weld} = 0.25$$
 in $R_r = 0.6\phi_{e1}F_{EXX}$ $F_{EXX} = 70$ ksi $\phi_{e1} = 0.8$ $R_r = 33.6$ ksi $L_{eff} = 4$ x $(33.98$ in -2 in) = 127.92 in $T_{eff} = \frac{t_{weld}}{\sqrt{2}} = 0.18$ in Throat $A_{eff} = L_{eff}x T_{eff} = 22.6$ in $R_r x A_{eff} = 759.81$ kips > 243 kips OK

Bolted Connection

Assume ASTM F3125 Grade A325 High Stength 3/4" \emptyset , threads excluded from the shear plane

$$F_{ub} = 120 \text{ ksi}$$
 Single Shear
$$A_b = 0.44 \text{ in}^2$$

$$R_n = 0.56A_bF_{ub}N_s = 29.69 \text{ kips}$$

$$L_c = 1.5 \text{ in} + 1"(clr) - (0.75 \text{ in}/2) = 2.13 \text{ in}$$
 Bearing
$$F_u = 58 \text{ ksi} \qquad t = 0.625 \text{ in}$$

$$R_n = 1.2L_ctF_u = 92.438 \text{ kips}$$

take as the lesser 29.69 kips

$$\emptyset R_n = 23.75 \text{ kips}$$
 per bolt

Abutment Rxn = 243 kips Multiply resistance by 2 since angle is in double shear

Number of Bolts =
$$\frac{243}{2x 23.75}$$
 = 5.11 use 5 bolts

Diaphragm

Assume trial Channel size = 1/2H_{oirder} = 18.25 in

Try MC18x42.7

Torsional Buckling Resistance

$$A_a = 12.6 \text{ in}^2$$

$$_{y}$$
 = 1.07 in l_{y} =

$$A_{g} = 12.6 \text{ in}^{2} \quad k_{y} = 1$$
 AISC SCM Table 1-5
 $r_{y} = 1.07 \text{ in} \quad l_{y} = 48 \text{ in}$ (4 ft girder spacing)

 $P_{ey} = \frac{\pi^{2}E}{\left(\frac{k_{y}l_{y}}{r_{y}}\right)^{2}}A_{g} = 1,792 \text{ kips}$ AASHTO BDS 8th 6.9.4.1.3-4

$$r_o =$$

$$J = 1.23 \text{ in}^4 \qquad r_o = 6.97 \text{ in} \qquad C_w = 852 \text{ in}^6$$
 $H = 0.93$

$$P_{ez} = \frac{1.23 \text{ in}^4}{(K_z l_z)^{^2}} + GJ = 0.97 \text{ in} \qquad C_w = 852 \text{ in}^6 \\ H = 0.93$$

$$P_{ez} = \frac{\left(\frac{\pi^2 E C_w}{(K_z l_z)^{^2}}\right) + GJ}{r_o^2} = 2,461 \text{ kips} \qquad \text{AASHTO BDS 8}^{\text{th}} 6.9.4.1.1 \\ AASHTO BDS 8}^{\text{th}} 6.9.4.1.1.3.2$$

$$P_e = (\frac{P_{ey} + P_{ez}}{2H}) \left[1 - \sqrt{1 - \frac{4P_{ey} P_{ez} H}{(P_{ey} + P_{ez})^{^2}}}\right] = 1589 \text{ kips}$$

$$P_e = (\frac{P_{ey} + P_{ez}}{2H})[1 - \sqrt{1 - \frac{4P_{ey}P_{ez}H}{(P_{ey} + P_{ez})^2}} =$$

$$P_o = F_y A_g =$$
 630 kips $\frac{P_e}{P_o} =$ 2.52 > 0.44

Therefore
$$P_n = 0.658 \frac{P_o}{P_e} P_o = 534 \text{ kips}$$

$$\emptyset_c = 0.95$$

$$\phi_c P_n = 507 \text{ kips}$$

See below for demand

HL-93

P15

$$P_{u_StrI} = 93 \text{ kips}$$

P_{u Str II} =

VI. Design Verification for Timber Stacked Abutment

Wide Flange Girder (WFG), Girder spacing, S = 4'-0"

Deck thickness - Timber = 11.5 inch, HMA = Varies

1.) Spreadsheet Calculations for L = 70'

Last revised: 09-19-2025 39 | P a g e

Span Length = 70 ft W36x194 w1 =0.05 klf **Timber Decking** w2 =0.02 klf **HMA** Overlay Krail = 0.77 klf/ft SW_{airders} = 1.164 klf/ft 0.194×6 $D_C =$ 1.99 klf/ft say 2 klf for design $D_W =$ 0.023 klf/ft say 0.03 klf for design $Rxn_{DC} =$ 3 kips/ft $Rxn_{DW} =$ 1 kips/ft $LL_{HL-93} =$ 5 kips/ft

 $LL_{P15} =$ Ftg dims

Width = 3.83 ftLength = 24 ft

Settlement Check (Service I, all Load Factors = 1)

7 kips/ft

Factored Loads

 $\begin{array}{ll} DC = & 3 \text{ kips/ft} \\ DW = & 1 \text{ kips/ft} \\ LL_{HL-93} = & 5 \text{ kips/ft} \\ Multiply loads by 24' \end{array}$

DC = 70 kips/ft DW = 25 kips/ft

 LL_{HL-93} = 110 kips/ft LL_{P15} = 159 kips/ft Controls

Total Vertical Load = 254 kips

Surface Area of Bearing = (11.5"/12) x 24' x 4 pads = 92 SF

Vertical Pressure = 2.76 ksf OK assuming allowable = 3 ksf

Bearing Check

Strength I = 317 kips

Strength II = 340 kips Controls

Bearing Pressure = 3.70 ksf OK assuming allowable = 10 ksf

Ref. BDP Table 10.1.8-7

Moment L = 4 ft

w = 3.54 ksf 3.70 ksf x 11.5/12

 $M_u = \frac{RB}{8} = 85.0 \text{ k*in}$ $F_b = 1.76 \text{ ksi}$ S = 57.98 in³

 $F_b = 1.76 \text{ ksi}$ S = 57.90 $\emptyset = 0.85$

 $M_r = \emptyset F_b S =$ 87 k*in > 85.0 k*in OK

$$V_u = \frac{PL}{4} = 19.5 \text{ kips}$$

$$F_{v} = 0.45 \text{ ksi}$$
 $V_{n} = \emptyset \frac{F_{v}bd}{1.5} = 0.75$
 $V_{n} = 0.75 \text{ loss}$

Compression Perpendicular to the grain

$$R_{u_max} = 159 \text{ kips}$$
 $A_c = 437 \text{ in}^2$

$$F_{cp} = 1.17 \text{ ksi}$$

$$P_r = 0.9 F_{cp} A_c =$$

(LL_{P15})

Check Cap Beam

Try 12 x 12 cap beam

$$P_r = 0.9F_{cp}11.5$$
" x 11.5" =
 $P_r = 0.9F_{cp}11.5$ " x (11.5"+ 3.5") =

NG OK

use 12 x 12 cap fastened to 4 x 12 block

Backwall Check

Assume 4 stacks of 12 x 12 Timber beams

Assumed Soil Properties:

$$K_a = 0.33$$

$$\Upsilon_s = 120 \text{ pcf}$$

$$h_{eq} = 4 ft$$

$$P = K_a \gamma_s H$$

$$P = 151.8 \text{ psf}$$

Load factor,

$$\Delta_p = K_a \gamma_s h_{eq}$$

$$\Delta_p = 158.4 \text{ psf}$$
Load factor,

Total Factored Pressure =

0.44 klf

L = Cantilever shoring length on either side of bridge = 110 in (assumed to be 18" + 2 x H)

Factored Moment

$$M_u = \frac{wL^2}{2} =$$
 19 k*ft = 223 k*in

$$\emptyset M_n = \emptyset F_b S =$$
 379 k*in > 223 k*in OK

Factored Shear

$$V_u = wL =$$
 4 kips b = d = 11.5 in

$$\emptyset V_n = \emptyset \frac{F_v b d}{1.5} =$$
 30 kips > 4 kips OK

Provide a minimum of (4) 12" x 12" for backwall

REFERENCES

- 1. AASHTO. (2017). AASHTO LRFD Bridge Design Specifications, 8th Edition, American Association of State Highway and Transportation Officials, Washington DC.
- 2. American Institute of Steel Construction. (2017). *Steel Construction Manual, 15th Edition*, AISC, Chicago, II.
- 3. Caltrans. (2024). *Standard Details* (XS Sheets), California Department of Transportation, Sacramento, CA.
- 4. Caltrans. (2024). *Standard Specifications*, 2024 Edition, California Department of Transportation, Sacramento, CA.
- 5. Caltrans. (2025). *Structure Technical Policy 17.1 Temporary Bridges*, California Department of Transportation, Sacramento, CA.
- 6. Caltrans. (2024). California Amendments to AASHTO LRFD Bridge Design Specifications, 8th Edition, California Department of Transportation, Sacramento, CA.

Last revised: 09-19-2025 43 | P a g e