

Bridge Design Details 7.2 August 2025

Footing Reinforcement

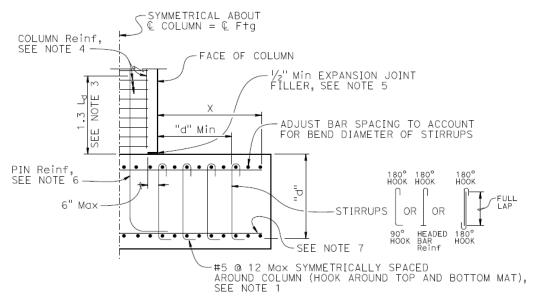


Figure 7.2.1 Footing Reinforcement Pinned Column (see also Seismic Design Criteria Figure C6.2.2.5-1)

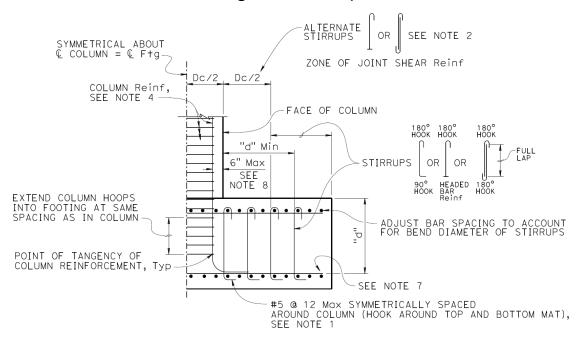


Figure 7.2.2 Footing Reinforcement Fixed Column (see also Seismic Design Criteria Figure C6.2.2.5-2)

Notes:

- 1. The minimum area of footing stirrups is shown, equivalent may be provided.
- 2. Alternate stirrups shall be used for Joint Shear if principal tension (P_t) > 3.50 $\sqrt{f'_c}$ (psi).
- 3. For minimum development length (L_d), see *AASHTO LRFD Bridge Design Specifications:* 5.10.8.2.1a Tension Development Length.
- 4. All column hoops shall be "ultimate" butt spliced continuous, see *Seismic Design Criteria 2.1*: 8.2.2 Reinforcement Splices in Seismic Critical Members.
- 5. The thickness of the expansion joint filler should allow for maximum column rotation and prevent crushing the edge of the column concrete against the footing. Minimum thickness should be ½".
- 6. When pinned columns are used for oblong columns having overlapping hoops, pin reinforcement must be detailed to clear the hoops. For minimum design requirements for column pin and key, see *Seismic Design Criteria 2.1*: 7.6.4 Column Key Design. Pinned reinforcement should be galvanized and enclosed with spirals.
- 7. Provide 90-degree hooks or headed bar reinforcement at ends of top and bottom mat reinforcement, where $L_d > X$ or as required. End hooks are not typical.
- 8. When precast construction is used, the 6-inch maximum distance to the first footing stirrup shall be measured to face of corrugated metal pipe.
- 9. For minimum clearances and pile embedment dimensions, see 6.4 Pile Footings.

Column Pin Reinforcement

Pin dowels and spirals shall be galvanized.

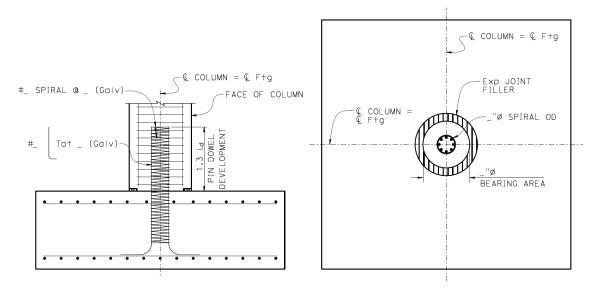


Figure 7.2.3 Column Pin Details