Road Connections
and Driveways
Standard Private and Commercial Driveway Approach
For Rural Areas With Unimproved Frontage On Conventional State Highways

(Drawing Not to Scale)

State R/W Line
Edge of Shoulder
Edge of Travel Way
Center Line

STATE HIGHWAY

Corner Sight Distance

12'
Minimum Driveway Width

Proposed AC Paved Section

R = 25'

Approximate limit of mandatory paving - 33'

2' Gravel Shoulder
-or-
Place AC dike between R/W line and 33' distance on both sides of the driveway when required as specified in Caltrans’ Highway Design Manual Section 835-3.

NOTES:
For driveways constructed with a fill slope of 4:1 or less and not requiring special drainage design, a 2’ AB shoulder should be placed on each side.

Driveway approach within 20’ of the traveled way shall have a grade not greater than 5%, except that on super-elevated curves, the pavement slope shall be continued to the edge of the shoulder.

Culvert pipe under the driveway approach might be required to carry the State highway gutter flow.

Paved portion of the driveway shall be surfaced not less than:
- Private: 3" AC over 6" AB
- Commercial 4" AC over 6" AB

<table>
<thead>
<tr>
<th>Design Posted Speed (mph)</th>
<th>Corner Sight Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>330</td>
</tr>
<tr>
<td>35</td>
<td>385</td>
</tr>
<tr>
<td>40</td>
<td>440</td>
</tr>
<tr>
<td>45</td>
<td>495</td>
</tr>
<tr>
<td>50</td>
<td>550</td>
</tr>
<tr>
<td>55</td>
<td>605</td>
</tr>
<tr>
<td>60</td>
<td>660</td>
</tr>
<tr>
<td>65</td>
<td>715</td>
</tr>
<tr>
<td>70</td>
<td>770</td>
</tr>
</tbody>
</table>
PHASE 3 - Erection of Falsework

After establishing the opening requirements, a field review of the bridge site should be made by the District designer to ensure that existing facilities (drainage, other bridges, or roadways) will not conflict with the falsework.

The placement and removal of falsework requires special consideration. During these operations, traffic should either be stopped for short intervals or diverted away from the span where the placement or removal operations are being performed. The method of traffic handling during these operations is to be included in the Special Provisions.

Topic 205 - Road Connections and Driveways

205.1 Access Openings on Expressways

Access openings are used only on expressways. The term access opening applies to openings through the right of way line which serve abutting land ownerships whose remaining access rights have been acquired by the State.

1. **Criteria for Location.** Access openings should not be spaced closer than one-half mile to an adjacent public road intersection or to another private access opening that is wider than 30 feet. When several access openings are closely spaced, a frontage road should be considered (see Index 104.3). To discourage wrong-way movements, access openings should be located directly opposite, or at least 300 feet from a median opening.

2. **Sight distance equivalent to that required for public road intersections shall be provided (see Index 405.1).**

3. **Width.** The normal access opening width should be 30 feet. A greater width may result in large savings in right of way costs in some instances, but should be considered with caution because of the possibility that public use might develop. Conversion of a private opening into a public road connection requires the consent of the CTC, which cannot be committed in advance (see the Project Development Procedures Manual).
(3) **Recessed Access Openings.** Recessed access openings, as shown on Figure 205.1, are desirable at all points where private access is permitted and should be provided whenever they can be obtained without requiring alterations to existing adjacent improvements. When recessed openings are required, the opening should be located a minimum distance of 75 feet from the nearest edge of the traveled way.

(4) **Joint Openings.** A joint access opening serving two or more parcels of land is desirable whenever feasible. If the property line is not normal to the right of way line, care should be taken in designing the joint opening so that both owners are adequately served.

(5) **Surfacing.** All points of private access should be surfaced with adequate width and depth of pavement to serve the anticipated traffic. The surfacing should extend from the edge of the traveled way to the right of way line.

![Figure 205.1](image)

RECESSED OPENING

NOTES:

- By widening the expressway shoulder, deceleration lanes may be provided where justified.
- This detail, without the recess, may be used on conventional highways.

205.2 Private Road Connections

The minimum private road connection design is shown on Figure 205.1. Sight distance requirements for the minimum private road connection are shown on Figure 405.7 (see Index 405.1(2)(e)).

205.3 Urban Driveways

These instructions apply to the design of driveways to serve property abutting on State highways in cities or where urban type development is encountered.

Details for driveway construction are shown on the Standard Plans. Corner sight distance requirements are not applied to urban driveways. See Index 405.1(2) for further information.

(1) **Correlation with Local Standards.** Where there is a local requirement regulating driveway construction, the higher standard will normally govern.

(2) **Driveway Width.** The width of driveways for both residential and commercial usage is measured at the throat, exclusive of any flares. (“W” as shown in Standard Plan A87A).

(3) **Residential Driveways.** The width of single residential driveways should be 12 feet minimum and 20 feet maximum. The width of a double residential driveway such as used for multiple dwellings should be 20 feet minimum and 30 feet maximum. The width selected should be based on an analysis of the anticipated volume, type and speed of traffic, location of buildings and garages, width of street, etc.

(4) **Commercial Driveways.** Commercial driveways should be limited to the following maximum widths:

(a) When the driveway is used for one-way traffic, the maximum width should be 25 feet. If the driveway serves a large parcel, where large volumes of vehicles or large vehicles are expected, the entrance maximum width should be 40 feet and the exit maximum width should be 35 feet.

(b) When the driveway is used for two-way traffic, the maximum width should be 35 feet. If the driveway serves a large parcel, where large volumes of vehicles or
large vehicles are expected, then the maximum width should be 45 feet.

(c) When only one driveway serves a given property, in no case should the width of the driveway including the side slope distances exceed the property frontage.

(d) When more than one driveway is to serve a given property, the total width of all driveways should not exceed 70 percent of the frontage where such a frontage is 100 feet or less. Where the frontage is more than 100 feet, the total driveway width should not exceed 60 percent of the frontage. In either case, the width of the individual driveway should not exceed those given in the preceding paragraphs. Where more than one driveway is necessary to serve any one property, not less than 20 feet of full height curb should be provided between driveways. This distance between driveways also applies to projects where curbs and gutters are not to be placed.

(e) Certain urban commercial driveways may need to accommodate the maximum legal vehicle. The width will be determined by the use of truck turn templates.

(5) Surfacing. Where curbs, gutters, and sidewalks are to be placed, driveways should be constructed of portland cement concrete. Where only curbs and gutters are to be placed and pedestrian traffic or adjacent improvements do not warrant concrete driveway construction, the driveway may be paved with the same materials used for existing surfacing on the property to be served.

(6) Pedestrian Access. Where sidewalks traverse driveways, the sidewalk shall continue across the driveway to alert driveway users that they are crossing a pedestrian walkway, and must yield to pedestrians on the sidewalk. Driveway corner radii should also be minimized to encourage low-speed turns by motorized vehicles and bicycles. For accessibility requirements, see DIB 82. Provision of this feature, as indicated in the Standard Plans, may require the acquisition of a construction easement or additional right of way. Assessment of these needs must be performed early enough in the design to allow time for acquiring any necessary permits or right of way. Additionally, designers should consider the following:

- In many cases providing the pathway along the back of the driveway will lower the elevation at the back of the sidewalk. Depending on grades behind the sidewalk the potential may exist for roadway generated runoff to enter private property. The need for features such as low berms within the construction easement, or installation of catch basins upstream of the driveway should be determined.

When there are no sidewalks or other pedestrian facilities that follow the highway, the designer may develop driveway details that eliminate the flatter portion along the back edge in lieu of using the Standard Plans for driveways. Refer to Topic 105 for additional information related to pedestrian facilities.

205.4 Driveways on Frontage Roads and in Rural Areas

On frontage roads and in rural areas where the maximum legal vehicle must be accommodated, standard truck-turn templates should be used to determine driveway widths where the curb or edge of traveled way is so close to the right of way line that a usable connection cannot be provided within the standard limits.

Where county or city regulations differ from the State’s, it may be desirable to follow their regulations, particularly where jurisdiction of the frontage road will ultimately be in their hands.

Details for driveway construction are shown on the Standard Plans. For corner sight distance, see Index 405.1(2)(c).

Driveways connecting to State highways shall be paved a minimum of 33 feet or to the edge of State right of way, whichever is less to minimize or eliminate gravel from being scattered on the highway and to provide a good surface for vehicles.
to accelerate and merge. For driveway crossings, Class I bikeways (Bike Paths), see Index 1003.1(5)

205.5 Financial Responsibility

Reconstructing or relocating any access openings, private road connections, or driveways required by revisions to the State highway facility should be done at State expense by the State or its agents. Reconstruction or relocation requested by others should be paid for by the requesting party.

Topic 206 - Pavement Transitions

206.1 General Transition Standards

Pavement transition and detour standards should be consistent with the section having the features built to the highest design standards. The transition should be made on a tangent section whenever possible and should avoid locations with horizontal and vertical sight distance restrictions. Whenever feasible, the entire transition should be visible to the driver of a vehicle approaching the narrower section. The design should be such that intersections at grade within the transition area are avoided. For decision sight distance at lane drops, see Index 201.7.

206.2 Pavement Widening

(1) Through Lane Additions. Where through lanes, climbing lanes, or passing lanes are added, the minimum recommended distance over which to transition traffic onto the additional width is 250 feet per lane. Figure 206.2 shows several examples of acceptable methods for adding a lane in each direction to a two-lane highway.

(2) Turning, Ramp, and Speed Change Lanes. Transitions for lane additions, either for left or right turns or to add a lane to a ramp, should typically occur over a length of 120 feet. Lengths shorter than 120 feet are acceptable where design speeds are below 45 miles per hour or for conditions as stated in Index 405.2(2)(c).

Where insufficient median width is available to provide for left turn lanes, through traffic will have to be shifted to the outside. See Figures 405.2A, B and C for acceptable methods of widening pavement to provide for median turn lanes.

(3) Lane Widening. An increase in lane width can occur at short radius curves which are widened for truck off-tracking, at ramp terminals with large truck turning volumes, or when new construction matches existing roadways with narrow lane widths. Extensive transition lengths are not necessary as the widening does not restrict the driver's expectations. Transition tapers for these types of situations should be at 10:1 (longitudinal to lateral).

(4) Shoulder and Bicycle Lane Widening. Shoulder and bicycle lane widening should normally be accomplished in a manner that provides a smooth transition.

206.3 Pavement Reductions

(1) Through Lane Drops. When a lane is to be dropped, it should be done by tapering over a distance equal to WV, where W = Width of lane to be dropped and V = Design Speed. In general, the transition should be on the right so that traffic merges to the left. Figure 206.2 provides several examples of acceptable lane drops at 4-lane to 2-lane transitions. The exception to using the WV criteria is for the lane drop/freeway merge movement on a branch connection which is accomplished using a 50:1 taper.

(2) Ramp and Speed Change Lanes. As shown in Figures 504.2A and 504.3L, the standard taper for a ramp merge into a through traffic lane is 50:1 (longitudinal to lateral). Where ramp lanes are dropped prior to the merge with the through facility, the recommended taper is 50:1 for design speeds over 45 miles per hour, and the taper distance should be equal to WV for speeds below 45 miles per hour.

The "Ramp Meter Design Guidelines" also provide information on recommended and minimum tapers for ramp lane merges. These guideline values are typically used in retrofit or restricted right-of-way situations, and are
404.5 Turning Templates & Vehicle Diagrams

Figures 404.5A through G are computer-generated turning templates at an approximate scale of 1" = 50' and their associated vehicle diagrams for the design vehicles described in Index 404.3. The radius of the template is measured to the outside front wheel path at the beginning of the curve. Figures 404.5A through G contain the terms defined as follows:

1. **Tractor Width** - Width of tractor body.
2. **Trailer Width** - Width of semitrailer body.
3. **Tractor Track** - Tractor axle width, measured from outside face of tires.
4. **Trailer Track** - Semitrailer axle width, measured from outside face of tires.
5. **Lock To Lock Time** - The time in seconds that an average driver would take under normal driving conditions to turn the steering wheel of a vehicle from the lock position on one side to the lock position on the other side. The default in AutoTurn software is 6 seconds.
6. **Steering Lock Angle** - The maximum angle that the steering wheels can be turned. It is further defined as the average of the maximum angles made by the left and right steering wheels with the longitudinal axis of the vehicle.
7. **Articulating Angle** - The maximum angle between the tractor and semitrailer.

Topic 405 - Intersection Design Standards

405.1 Sight Distance

1. **Stopping Sight Distance**. See Index 201.1 for minimum stopping sight distance requirements.
2. **Corner Sight Distance**.
 a. General--At unsignalized intersections a substantially clear line of sight should be maintained between the driver of a vehicle, bicyclist or pedestrian waiting at the crossroad and the driver of an approaching vehicle. Line of sight for all users should be included in right of way, in order to preserve sight lines.

Adequate time must be provided for the waiting user to either cross all lanes of through traffic, cross the near lanes and turn left, or turn right, without requiring through traffic to radically alter their speed.

The values given in Table 405.1A provide 7-1/2 seconds for the driver on the crossroad to complete the necessary maneuver while the approaching vehicle travels at the assumed design speed of the main highway. The 7-1/2 second criterion is normally applied to all lanes of through traffic in order to cover all possible maneuvers by the vehicle at the crossroad. However, by providing the standard corner sight distance to the lane nearest to and farthest from the waiting vehicle, adequate time should be obtained to make the necessary movement. On multilane highways a 7-1/2 second criterion for the outside lane, in both directions of travel, normally will provide increased sight distance to the inside lanes. Consideration should be given to increasing these values on downgrades steeper than 3 percent and longer than 1 mile (see Index 201.3), where there are high truck volumes on the crossroad, or where the skew of the intersection substantially increases the distance traveled by the crossing vehicle.

In determining corner sight distance, a setback distance for the vehicle waiting at the crossroad must be assumed. **Set back for the driver of the vehicle on the crossroad shall be a minimum of 10 feet plus the shoulder width of the major road but not less than 15 feet.** Line of sight for corner sight distance is to be determined from a 3 and 1/2-foot height at the location of the driver of the vehicle on the minor road to a 4 and 1/4-foot object height in the center of the approaching lane of the major road as illustrated in Figure 504.3J. If the major road has a median barrier, a 2-foot object height should be used to determine the median barrier set back.

In some cases the cost to obtain 7-1/2 seconds of corner sight distances...
may be excessive. High costs may be attributable to right of way acquisition, building removal, extensive excavation, or immitigable environmental impacts. In such cases a lesser value of corner sight distance, as described under the following headings, may be used.

(b) Public Road Intersections (Refer to Topic 205)—At unsignalized public road intersections (see Index 405.7) corner sight distance values given in Table 405.1A should be provided.

At signalized intersections the values for corner sight distances given in Table 405.1A should also be applied whenever possible. Even though traffic flows are designed to move at separate times, unanticipated conflicts can occur due to violation of signal, right turns on red, malfunction of the signal, or use of flashing red/yellow mode.

Table 405.1A

<table>
<thead>
<tr>
<th>Design Speed (mph)</th>
<th>Corner Sight Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>275</td>
</tr>
<tr>
<td>30</td>
<td>330</td>
</tr>
<tr>
<td>35</td>
<td>385</td>
</tr>
<tr>
<td>40</td>
<td>440</td>
</tr>
<tr>
<td>45</td>
<td>495</td>
</tr>
<tr>
<td>50</td>
<td>550</td>
</tr>
<tr>
<td>55</td>
<td>605</td>
</tr>
<tr>
<td>60</td>
<td>660</td>
</tr>
<tr>
<td>65</td>
<td>715</td>
</tr>
<tr>
<td>70</td>
<td>770</td>
</tr>
</tbody>
</table>

(c) Private Road Intersections (Refer to Index 205.2) and Rural Driveways (Refer to Index 205.4)—The minimum corner sight distance shall be equal to the stopping sight distance as given in Table 201.1, measured as previously described.

(d) Urban Driveways (Refer to Index 205.3)—Corner sight distance requirements as described above are not applied to urban driveways.

(3) **Decision Sight Distance.** At intersections where the State route turns or crosses another State route, the decision sight distance values given in Table 201.7 should be used. In computing and measuring decision sight distance, the 3.5-foot eye height and the 0.5-foot object height should be used, the object being located on the side of the intersection nearest the approaching driver.

The application of the various sight distance requirements for the different types of intersections is summarized in Table 405.1B.

(4) **Acceleration Lanes for Turning Moves onto State Highways.** At rural intersections, with “STOP” control on the local cross road, acceleration lanes for left and right turns onto the State facility should be considered. At a minimum, the following features should be evaluated for both the major highway and the cross road:

- divided versus undivided
- number of lanes
- design speed
- gradient
- lane, shoulder and median width
- traffic volume and composition of highway users, including trucks and transit vehicles
- turning volumes
- horizontal curve radii
- sight distance
- proximity of adjacent intersections
- types of adjacent intersections

Where restrictive conditions exist, similar to those listed in Index 405.1(2)(a), the minimum value for corner sight distance at both signalized and unsignalized intersections shall be equal to the stopping sight distance as given in Table 201.1, measured as previously described.
For additional information and guidance, refer to AASHTO, A Policy on Geometric Design of Highways and Streets, the Headquarters Traffic Liaison and the Design Coordinator.

Table 405.1B

Application of Sight Distance Requirements

<table>
<thead>
<tr>
<th>Intersection Types</th>
<th>Stopping Sight Distance</th>
<th>Corner Sight Distance</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Roads</td>
<td>X</td>
<td>X</td>
<td>(1)</td>
</tr>
<tr>
<td>Public Streets and Roads</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Signalized Intersections</td>
<td>X</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>State Route Intersections & Route Direction Changes, with or without Signals</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NOTES:

1. Using stopping sight distance between an eye height of 3.5 ft and an object height of 4.25 ft. See Index 405.1(2)(a) for setback requirements.
2. Apply corner sight distance requirements at signalized intersections whenever possible due to unanticipated violations of the signals or malfunctions of the signals. See Index 405.1(2)(b).

405.2 Left-turn Channelization

1. **General.** The purpose of a left-turn lane is to expedite the movement of through traffic by, controlling the movement of turning traffic, increasing the capacity of the intersection, and improving safety characteristics.

 The District Traffic Branch normally establishes the need for left-turn lanes.

2. **Design Elements.**

 a. **Lane Width –** The lane width for both single and double left-turn lanes on State highways shall be 12 feet.

 For conventional State highways with posted speeds less than or equal to 40 miles per hour and AADTT (truck volume) less than 250 per lane that are in urban, city or town centers (rural main streets), the minimum lane width shall be 11 feet.

 When considering lane width reductions adjacent to curbed medians, refer to Index 303.5 for guidance on effective roadway width, which may vary depending on drivers’ lateral positioning and shy distance from raised curbs.

 b. **Approach Taper --** On conventional highways without a median, an approach taper provides space for a left-turn lane by moving traffic laterally to the right. The approach taper is unnecessary where a median is available for the full width of the left-turn lane. Length of the approach taper is given by the formula on Figures 405.2A, B and C.

 Figure 405.2A shows a standard left-turn channelization design in which all widening is to the right of approaching traffic and the deceleration lane (see below) begins at the end of the approach taper. This design should be used in all situations where space is available, usually in rural and semi-rural areas or in urban areas with high traffic speeds and/or volumes.

 Figures 405.2B and 405.2C show alternate designs foreshortened with the deceleration lane beginning at the 2/3 point of the approach taper. Figure 405.2C is shortened further by widening half (or other appropriate fraction) on each side. These designs may be used in urban areas where constraints exist, speeds are moderate and traffic volumes are relatively low.

 c. **Bay Taper --** A reversing curve along the left edge of the traveled way directs traffic into the left-turn lane. The length of this bay taper should be short to clearly delineate the left-turn move and to discourage through traffic from drifting into the left-turn lane. Table 405.2A gives offset data for design of bay tapers. In urban areas,