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SUMMARY 

This project explores the use of the sensor technology for long-term bridge structural 

health monitoring.  In Phase I of the project, accelerometers and other types of 

sensors were installed on two new highway bridges in Orange County, CA, and 

vibration measurement data were analyzed, as reported to Caltrans by Feng and Kim 

(2001).  In this Phase-II study, an additional highway bridge was instrumented with 

sensors, but the focus is on the development of methodologies for analyzing the 

vibration data gathered by the sensors and, based on the results, diagnosing the on-

going “health” of the structure.  In this study, the stiffness of structural elements of 

the bridge structure is considered as an indication of structural “health”.  As a 

structure deteriorates due to aging or suffers from damage caused by extreme loads 

such as earthquakes, stiffness of the damaged structural elements would decrease, and 

as a result, the global vibration characteristics of the structure would change.  

Therefore, by monitoring the structural vibration, one can identify the change in 

structural vibration characteristics and furthermore change in element stiffness.  As 

the change exceeds certain threshold, the structure is considered damaged.  

Identification of structural stiffness enables assessment of not only extent but also 

locations of structural damage.  A stiffness established when the structure is new can 

be used as a baseline for long-term structural health monitoring.  The baseline based 

on vibration measurement can also be used for verifying the design of the structure. 

  

In this report, Chapter 1 provides background information for the project and Chapter 

2 a literature review on the sensor-based monitoring technology.  Chapter 3 describes 
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the installation of sensors, data logs, and communication devices on the three 

highway bridges.  Chapter 4 presents acceleration data recorded at the instrumented 

bridges including traffic- and earthquake-induced vibration data, including 1712 sets 

of traffic-induced vibration data collected at the Jamboree Road Overcrossing.  

Chapter 5  presents measured strain data and comparison between the results obtained 

from strain and acceleration data analyses. 

 

Chapter 6 develops a number of methods and algorithms for identifying element 

stiffness of a bridge structure based on vibration measurement.  The chapter is divided 

into two sections: one focuses on bridge super-structures and the other on bridge sub-

structures (columns).  The super-structure stiffness is identified based on traffic 

excitations, while sub-structure stiffness is identified by earthquake excitations for the 

purpose of seismic damage assessment and thus nonlinear identification methods 

become necessary.  A Bayesian updating method and a neural network method were 

developed for identifying super-structure stiffness based on traffic-induced vibration 

measurement.  In this regard, an innovative traffic excitation model was proposed in 

this study that is more realistic and thus reliable than the conventional white noise 

model because of the use of available traffic information from video monitoring.  For 

identifying bridge column stiffness, the neural network method and the extended 

Kalman filter method were formulated based on earthquake vibration data.  These 

system identification methods can also be categorized as frequency-domain and time-

domain methods.  Some of these methods can be performed online in real time and 

deal with nonlinear structural response. 

 

Chapter 7 presents experimental validation of the system identification methods 

developed in Chapter 6.  Two shaking table tests were performed on large-scale 

concrete bridge models involving multiple bents and multiple columns, progressively 

inducing seismic damage to the models.  The stiffness reduction at the bridge columns 
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identified based on the measured vibration data is consistent with the actual damage, 

in terms of the damage extents and locations.  These shaking table tests represent the 

first effort in experimentally validating such damage identification methods using 

realistic structural models suffering from realistic seismic damage.  

 

In Chapter 8, a vibration test under controlled traffic excitation was performed on one 

of the instrumented bridges, and the results were compared with those obtained from 

a similar test performed when the bridge was new.  Chapter 9 develops a database for 

modal frequencies and furthermore for element stiffness values for each of the 

instrumented bridges based on vibration measurement.  The stiffness values were 

identified using the neural network-based system identification method, and the 

results are consistent with those identified by the other methods presented in Chapter 

6.  Variations in the identified frequencies (as large as +/-10%) and in stiffness values 

(as large as 6%) for one of the bridges were observed over a four-year period, due to 

change in environmental conditions.  From the element stiffness database, it is 

observed that the superstructure stiffness identified from vibration measurement 

fluctuates around 95% of the design values, while the column stiffness is 85% of the 

design value.  Similar observations were made for the other two bridges.   The 

stiffness database serves as the baseline for long-term monitoring. 

 

Chapter 10 describes a software platform developed in this project based on the 

stiffness identification methods developed in this study for automated data processing, 

analysis, stiffness identification, baseline updating, and database development.  

Finally, Chapter 11 summarizes the conclusions made in this project and suggests 

important topics for future study such as estimation of remaining capacity of bridges 

based on stiffness evaluation. 
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Chapter 1 
 

INTRODUCTION 

This chapter first describes motivations of this research project on long-term 

performance monitoring of Caltrans highway bridges, by introducing the concept of 

vibration-based highway bridge structural health monitoring and its potential 

advantages.  Then, this chapter summarizes the overall scope of this two-phased 

project.  As this is the second report focusing on the Phase-II research, the work 

accomplished in Phase I of this project will then be briefly reviewed.  

 

1.1  Vibration-Based Bridge Structural Health 
Monitoring: Concept and Advantages 

Structural condition assessment of highway bridges has long relied on visual 

inspection (Fig. 1.1.1, courtesy of FHWA), which involves subjective judgment of 

inspectors and detects only local and visible flaws.  The frequency of visual 

inspection and the qualification of the inspectors are regulated by a standard, the 

National Bridge Inspection Standards (NBIS 1996).  And the Federal Highway 

Administration (FHWA) Recoding and Coding Guide (FHWA, 1995) was also 

provided to guide the procedure including the condition ratings and the 

documentation in current practice.  Even with these provisions, a recent investigation 

initiated by FHWA to examine the reliability of visual inspections reveals significant 
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variability in the structural condition assignments by inspectors (Phares et al., 2004).  

Moreover, visual inspection cannot quantitatively evaluate the strength and/or 

deformation capacity reservation of a bridge.  Local defects or flaws might or might 

not have a significant effect on the bridge global performance. 

 

Figure 1.1.1  Visual Inspection 

 

Sensor-based structural health monitoring can revolutionize the traditional way we 

inspect structures, in a more timely, objective, and quantitative fashion.  By installing 

appropriate sensors at critical locations on a bridge structure, transmitting the sensor 

data through a communications network, and analyzing the data through a software 

platform, the location and severity of bridge deterioration and damage can be 

automatically, remotely, and rapidly assessed, without sending inspection crews to the 

site.   As the sensor, networking, and communication technologies advance, the 

sensor-based structural health monitoring (SHM) has become an intensively 

investigated subject (e.g., Aktan et al, 1997; Doebling et al, 1998, Feng and Kim, 

1998, Feng and Bhang, 1999, Aktan et al, 2000; Park, et al, 2001, Peeters et al, 2001, 
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Catbas and Aktan, 2002; Chang and Liu, 2003; Chen and Feng, 2003, Kim, et al, 

2003, Sohn, et al, 2003, Feng, et al, 2004).  

In addition to the potential benefits to bridge inspection and maintenance, sensor-

based monitoring results can also be used to verify the current bridge design 

approaches and suggest future improvement.  The monitoring results can be used for 

making more scientific decisions in terms of prioritization of bridges for structural 

retrofit and strengthening.  Furthermore, the sensor-based continuous monitoring will 

potentially enable real-time and remote post-event damage assessment of highway 

bridges and early warning, significantly improving emergency response operations. 

As a branch of the wide-ranging subjects in SHM research, many researchers seek to 

measure the structural vibration behavior (dynamic response of a structure with or 

without measuring the exerting excitations), and infer from the vibration data the 

level of structural global and/or local integrity.  This is partially because vibration 

sensors (such as accelerometers) can be easily attached to the surface of an existing 

structure, compared with other sensors (such as strain sensors) that require 

embedment during the construction (for concrete structures).  The concept of 

vibration-based SHM comes from a fact that, when the structure is subjected to 

damage or deterioration, the stiffness of some structural components or the support 

conditions will change, and as a result, the global vibration characteristics of the 

structure will change accordingly.  Therefore, by monitoring the vibration and 

detecting changes in the vibration characteristics, and further interpreting such 

changes in terms of element stiffness changes, one can assess quantitatively the 

structural health condition.  Besides its global and quantitative natures, vibration 
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monitoring is a nondestructive condition assessment method that can be implemented 

continuously on highway bridges without interrupting traffic.  This has made it 

particularly attractive. 

However, two major obstacles remain against successful implementations of the 

vibration-based SHM in real-life bridge structures.  One is the lack of low-cost high-

performance vibration sensors and data acquisition systems, the other is the lack of 

proper methodologies to interpret vibration data in terms of structural integrity.  
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1.2  Research Object and Scope 

The overall objective of this project is to explore the use of the sensor technology for 

long-term bridge structural performance monitoring, by (1) demonstrating the 

installation of sensor and monitoring systems on three typical highway bridges and (II) 

developing methodologies and software for vibration data analysis and interpretation.  

As reported by Feng and Kim (2001), the Phase-I effort focuses on the 

instrumentation of two highway bridges and preliminary data measurement and 

analysis.  The Phase-II research included the instrumentation of an additional 

highway bridge, upgrade of communication links for the monitoring systems, but the 

major focus was on the development of methods for interpreting bridge vibration data 

into the on-going structural health, defined as element stiffness of the bridge structure 

in this study.  The methods are mainly based on bridge responses to traffic loads.  

Using traffic-induced vibration data has a few practical advantages over other bridge 

structural condition assessment methods: (I) It does not interrupt traffic; (II) It 

captures the in-situ dynamic behavior of the bridge undergoing its normal service; (III) 

It can be performed continuously, scheduled periodically or triggered automatically 

and (IV) It requires no special experimental arrangement or a heavy shaker/hammer.  

During Phase II of the research, the authors obtained unique opportunities to verify 

the SHM methods developed in this study by performing seismic shake table tests on 

large-scale realistic bridge models.  These experiments demonstrate that the proposed 

vibration-based methods can quantitatively assess the bridge structural conditions, 

locate the damage zone and provide a mean to evaluate the bridge remaining capacity.  
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1.3 Overview of Phase-I Work and Phase-II 
Report 

The Phase-I work of this project has been summarized in a Caltrans report by Feng 

and Kim (2001).  In Phase I, sensor systems for long-term structural performance 

monitoring were installed on two new highway bridges in Orange County, California: 

the Jamboree Road Overcrossing (JRO) and the West Street On-Ramp (WSO).  They 

include accelerometers, strain gauges, pressure sensors, displacement sensors, 

installed or embedded at strategic locations of both super- and substructures.  Data 

recorders and power supplies were also installed at the bridge sites.  Preliminary 

vibration measurement and data analysis were performed on these two instrumented 

bridges.  On the JRO bridge, ambient or traffic-induced vibration data were collected, 

based on which natural frequencies and mode shapes were extracted using peak-

picking, randomdec and frequency domain decomposition methods, assuming the 

excitation is a spatially uncorrelated white noise process.  These results were 

compared with those obtained by the preliminary finite element analysis.  On the 

WSO bridge, braking and bumping vibration tests were carried out using a water 

truck.  Natural frequencies were derived using similar methods as for the JRO bridge.  

The JRO bridge and the WSO bridge instrumented in Phase I, are short or medium 

span reinforced concrete box girder bridges, where the mechanical properties of the 

abutments, including its support condition, mass and interaction with soil and 

foundations, and its constrain stiffness to the superstructure, have significant 

influence of the bridge dynamic behavior.  To enrich the spectrum of the monitoring 

bridges, a 3rd bridge, the Fairview Road On-Ramp Overcrossing (FROO), with longer 

span length and more number of spans, was instrumented with a denser sensor system 

in Phase II.   
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In Phase II, the existing monitoring system on the JRO and the WSO underwent 

major upgrades to accommodate wireless remote data acquisition.  Such upgrades 

ease the data collection, and are highly valuable for establishing a database to monitor 

the long-term behaviors of these bridges.  They also enable on-line real-time data 

visualization and sharing on the Internet.  

This report documents the Phase-II study.  A literature review on structural 

instrumentation and performance monitoring in provided in Chapter 2.  The 

instrumentation of the FROO and the system upgrades in the JRO and WSO are 

documented in Chapter 3. Recorded data from ambient vibration and due to 

earthquakes are shown in Chapter 4.  As stated before measurements are taken not 

only from accelerometers but also from strain gauges. In chapter 5 results obtain from 

strain measurement and analysis are discussed. More importantly, the Phase-II 

research focus on the development methods for analyzing and interpreting the 

vibration data into structural health.  Chapter 6 describes the vibration-based SHM 

methods proposed and developed in this study, and Chapter 7 documents the unique 

shaking table tests performed in this study to verify the SHM methods.  Chapter 8 

discusses the field tests conducted on WSOO using water trucks under controlled 

environments.  It has been well known that the environmental changes have 

considerable effects on modal identification results.  Chapter 9 shows the variation in 

modal identification results throughout the last four years.  Chapter 10 describes the 

software developed in this study that implements the proposed and developed SHM 

methods. Finally, Chapter 11 summarizes this project by providing concluding 

remarks and suggesting future research topics.  
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Chapter 2 
 

LITERATURE REVIEW 

Structural condition assessment of highway bridges has long relied on visual 

inspection, which involves subjective judgment of inspectors and detects only local 

and visible flaws.  The frequency of visual inspection and the qualification of the 

inspectors were regulated by a standard, the National Bridge Inspection Standards 

(NBIS 1996).  The Federal Highway Administration (FHWA) Recoding and Coding 

Guide (FHWA, 1995) was also provided to guide the procedure including the 

condition ratings and the documentation in current practice.  Even with these 

provisions, a recent investigation initiated by FHWA to examine the reliability of 

visual inspections reveals significant variability in the structural condition 

assignments by inspectors (Phares et al., 2004).  Moreover, visual inspection cannot 

quantitatively evaluate the strength and/or deformation capacity reservation of a 

bridge.   

In order to investigate the global structural condition of bridges in an automated, 

continuous, objective and quantitative manner, structural health monitoring (SHM) 

has been promoted by researchers (e.g., Aktan et al, 1997; Doebling et al, 1998, Feng 

and Kim, 1998, Feng and Bhang, 1999, Aktan et al, 2000; Park, 2001, Peeters et al, 

2001, Catbas and Aktan, 2002; Chang and Liu, 2003; Chen and Feng, 2003, Kim, et 

al, 2003, Sohn, et al, 2003, Feng, et al, 2004).  Recently, SHM has been an intensively 

investigated subject.   
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As a branch of the wide-ranging efforts of SHM, many researchers seek to measure 

the structural vibration behavior (dynamic response of a structure with or without 

measuring the exerting excitations), and infer from the vibration data the level of 

structural integrity. Among many nondestructive evaluation methods, vibration 

monitoring is one that can be implemented continuously on highway bridges without 

interrupting traffic.  

A thorough literature review on vibration-based SHM was first presented by Doebling 

et al. (1996), summarizing hundreds of publications up to 1995.  A four-level 

hierarchy, namely, (I) detecting the existence of damage, (II) locating damaged 

portions, (III) evaluating the severity of damage and (IV) predicting its future 

consequences, proposed by Rytter (1993) and defined as the goals of SHM.  Recently, 

an updated review of the state was presented by Sohn et al. (2003), summarizing 

publications from 1996 to 2001.  This review interprets vibration-based SHM 

following a statistical pattern recognition paradigm, consisting of a four-part process: 

(I) operational evaluation, (II) data acquisition, fusion, and cleansing, (III) feature 

extraction and information condensation, and (IV) statistical model development for 

feature discrimination.  In this paradigm, features that are believed damage sensitive 

are extracted from vibration data, and a pattern recognition procedure is employed to 

classify the feature vectors to determine the existence, location and severity of 

structural damage.  While the important role of statistical methods in SHM was 

recognized, the ultimate goal of SHM is still damage evaluation, as was defined by 

the four-level hierarchy in the previous review and by Sikorsky (2005).  In view of 

difficulties associated with mathematical models (often referring to finite element 

models) of structural systems, especially the difficulty in quantifying the modeling 

uncertainty and the bias due to modeling errors, the reviewers uphold methods that are 
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not based on such models as more attractive.  However, difficulties of non-model-

based methods were also recognized, especially in quantifying the severity of damage 

where a supervised learning mode is usually adopted.  Training patterns have to be 

generated by a mathematical model whose fidelity remains to be verified, because 

data sets from a damaged structure are seldom obtained and if exist, not adequate to 

cover all possible damage scenarios.  A sufficient coverage on various scenarios by 

the training patterns, nonetheless, is essential in the supervised learning procedure.   

Research in vibration-based SHM has produced substantial literature, with many 

conferences and journals held for information exchange and demonstration of 

research results (e.g. Ghanem and Shinozuka, 1995; Safak 1989; Safak 1991; Feng 

and Kim, 1998, Feng and Bhang,1999; Feng and Kim, 2001, Park, et al, 2001, Feng et 

al, 2003, Kim, et al, 2003). These methods can be grouped into two depending on 

whether the identification is carried out in frequency or time domain. If it is in 

frequency domain, basically the changes in modal values; frequency, damping, shape, 

are used as an indication of damage. However; if one wants to identify the changes 

more in detail like changes in elemental stiffness, time domain identification methods 

might be more appropriate. Time domain methods can be grouped into two depending 

on whether they are purely data driven or they are incorporating finite element (FE) 

model. If it is aimed to determine the changes in the stiffness values, FE model must 

always be used. Within time domain identification methods, the most common one is 

the least squares estimation (LSE). It is basically performing an optimization for the 

parameters such as stiffness and damping so that the error between the measured and 

the simulated responses is minimized. LSE is useful as a system identification  

technique, when used in combination with a damage detection algorithm (e.g., Stubbs 

et al, 200).  However, there are some drawbacks of LSE. Firstly, physical insight can 
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be easily lost and a local maximum can be chosen over a global one (Udwadia, 1988). 

Secondly, LSE is very time consuming and cannot be applied for “on-line” SHM and 

damage detection. To overcome this difficulty, the recursive least squares (RLS) 

technique is proposed so that any time varying property in a system caused by damage 

can be tracked in real time. However in this case incorporation of FE is sacrificed, i.e. 

it is purely data driven so change in the system parameters can be tracked but it is not 

possible to link this to the change in structural stiffness and damping. Also, RLS is 

susceptible to even low level of noise. As can be seen every method has some 

drawbacks and is not effective for on-line identification of stiffness values under 

realistic conditions.  

Kalman filtering was a break-through in system engineering field when first proposed 

four decades ago. It not only uses the data in a probabilistic sense but also gets 

information from structural model (Kalman, 1960). Results obtained by the Extended 

Kalman Filter (EKF) approach from simulated data and well defined models with 

known damage scenarios were reported (Yun and Shinozuka, 1980; Hoshiya and 

Saito, 1984; Yang et al, 2005; Straser and Kiremidjian, 1996; Loh and Chung, 1993; 

Loh and Tou, 1995, Ghanem and Ferro, 2006). However, applicability of the EKF 

approach to civil engineering structures involving high uncertainties in structures and 

loadings under realistic damaging events has not yet been studied. 

Evident by these reviews and more recent papers (e.g. Bolton et al., 2001; Hera, 2004; 

Koh et al., 2003; Lam et al., 2004; Yang and Lin, 2005), despite significant efforts, 

damage identification by SHM is still a highly challenging problem.  When 

implementing vibration-based SHM to real-life structures, the limitation of sensing 

capacity (e.g. spatial limitation due to insufficient number of sensors or prohibitive 

positions of instrumentation, and temporal limitation due to insufficient sensor 
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frequency range and excitation bandwidth), and the operational and environmental 

variations of the structures have significantly increased the difficulties.   

Nonetheless, it is believed that part of the challenges in SHM can be attributed to a 

scholars’ preference of an inductive, objective and entirely data-driven methodology.  

A shift of epistemology from a purely inductive to a deductive-inductive hybrid 

methodology might help to ease the problem and bring forward useful results.  In the 

deductive-inductive methodology, a priori knowledge, derived either from established 

theories, engineering experiences, or even subjective postulations, is incorporated in a 

probabilistic model of the structural system.  In this model, the extent of knowledge 

limitation is represented by the uncertainty of the model structure and parameters.  

This model is subjected to correction or refinement based on sensor data, by first 

deducing the expected vibration behaviors from the a priori model, and then 

comparing them with the sensor observations and updating the model in a systematic 

induction to reconcile the predicted and observed vibration.  The advantage of this 

approach is that gaps of necessary information not provided by sensor data are filled 

in with the currently available best understanding of the system.  Therefore, SHM is 

no longer merely a means of nondestructive damage evaluation, but a procedure of 

information collection to correct/refine the probabilistic model of the structural 

system so as to gradually diminish the system uncertainty. 

The above methodology is essentially a Bayesian approach.  This vision of SHM can 

be traced back to Beck (1989), where a Bayesian framework was laid down for 

structural system identification that selects the most probable model from a class of 

models based on input/output measurement.  The major usage of this data-improved 

model is for response prediction for future loads, which was shown asymptotically 

correct as the sample size of measurement increases.  Later in Beck and Katafygiotis 
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(1998), this vision was formalized to not only update the model, but also assess the 

uncertainties of the model itself and its predictions.  This formulation addresses 

explicitly the difficult problem in parameter identification: the inherent ill-

conditioning and non-uniqueness.  If the a posteriori probability of the parameters has 

mono-mode, the system is globally identifiable; or if it has multiple but distinct peaks, 

the system is locally identifiable; when it has sustained support in a manifold within 

the parameter space, the system is unidentifiable.  In the latter two cases, prediction of 

structural behaviors is still possible in this framework, using more than one candidate 

model, but weighting their predictions according to their model a posteriori 

probability.  The last case was treated in Beck and Au (2002) using a Markov chain 

Monte Carlo method.  The Bayesian framework was extended in Beck and Yuen 

(2004) to address the modeling error issue arising when the ‘true’ system is not within 

the class of models being examined.  Classes of models were compared based on the 

Bayesian a posteriori probability, which was revealed to consist of two parts: one 

appreciates the fitness of the model to the data, and the other appreciates the model 

parsimony.  The capacity of a data-updated model to predict in a probabilistic sense 

the structural response to future loads was utilized to make a connection between 

SHM results and structural reliability evaluation (e.g., Park, et al, 1997, Papadimitriou 

et al., 2001; Beck and Au, 2002).  Solutions to the implemental difficulties in SHM 

due to operational and environmental variations were suggested also in a Bayesian 

framework.  In Yuen et al. (2002) a time-domain Bayesian updating was proposed 

when system inputs are not measured, and in Yuen and Beck (2003), the same 

problem is addressed by a frequency-domain approach.  In Vanik et al. (2000) 

variation of modal parameters (frequencies and mode shapes) was treated in a 

Bayesian framework to set a probabilistic measure of the significance of modal 
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feature changes.  Although damage identification is not the major concern of the 

model updating procedure, it is also possible if damage can be defined quantitatively 

in terms of parameter changes (Yuen et al., 2004). 

This approach is certainly model-dependant.  However, it can be argued that models 

are almost inevitable anyway in structural condition assessment (e.g., in training 

pattern generation) and in evaluation of current and expected future performance of a 

structure.  To minimize the disadvantage caused by modeling errors, one may need to 

avoid a deterministic perspective of a model, but instead, use a probability measure to 

represent modeling uncertainty. 
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Chapter 3 
 

HARDWARE INSTALLATION 
AND UPGRADES 

This chapter reports the upgrades on the monitoring systems at the Jamboree Road 

Overcrossing (JRO) and the West Street On-Ramp (WSO) that were installed during 

the Phase-I study, and the instrumentation of the 3rd bridge, the Fairview Road On-

Ramp Overcrossing (FROO).  

 

3.1  Upgrades of Phase-I JRO Monitoring 
System  

The monitoring system at the JRO underwent the following major upgrades in Phase 

II of this research.  

 

3.1.1 Addition of Temporary Sensors 

In the spring of 2002, four additional temporary accelerometers were installed on the 

JRO bridge.  The purpose of such additional instrumentation is two-folded:  Firstly, 

analysis of the vibration data obtained from the permanent sensors only shows that 

the number of sensors is not sufficient for mode shape identification therefore 

additional sensors are needed; and secondly, it is to obtain data comparable to the 

initial data sets collected when temporary sensors were on the bridge at the very 
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beginning of the monitoring project.  Channel 13 to 16 are the temporary 

accelerometers added (Fig. 3.1.1).  Channel 16 was later found to be out of order.  

Therefore, the JRO monitoring system currently has 14 accelerometers and one 

displacement sensor (Channel 12).  Due to the limited funding,   we could not install 

sensors at all the desirable locations such as Abutment 1.   

 

Figure 3.1.1  Sensors on JRO  

 

3.1.2 Installation of Wireless Remote Data Acquisition System 

To overcome a distance of 6 miles and remotely access the monitoring system and 

verify its working conditions, a wireless data acquisition system was installed on the 

JRO bridge during the first quarter in 2004.  The system includes the following 

acquired hardware and software developed in this project.  
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Hardware:   

(1) A pair of Cisco Aironet 350 Wireless Bridges, working in IEEE 802.11b Network 

Standard, 2.4 to 2.497 GHz frequency range.  One was installed at the bridge site, 

mounted inside the existing data logger box, configured as the civil-eng-root end with 

IP address 128.200.109.194.  The other was installed in the facility room in 

Engineering Tower at UC Irvine, configured as the civil-eng-nonroot end with IP 

address 128.200.109.195.  Figure 3.1.2 shows the web pages where the status of these 

pair of devices are displayed and their working parameters can be configured by a 

system administrator.  

   

Figure 3.1.2  Web Pages of the Wireless Bridges 

 

(2) A pair of Cisco AIR-ANT3338 Aironet Antennas, with gain 21dBi, capable of 

approximate range of 25 miles (at 2Mbps) or 11.5 miles (at 11Mbps).  One was 

mounted on top of a steel pole at the bridge site; the other was mounted on top of a 

pole on the roof of Engineering Tower at UC Irvine (Fig. 3.1.3).  The steel pole at the 

bridge site was designed and constructed by K. A. Wang & Associates. Inc.  
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Figure 3.1.3  Directional Antennas  
 

(3) A LAN converter provided by Tokyo Sokushin Co., Ltd, the sensor and data 

logger maker, to connect the data logger to the Internet through it RS 232 series port.  

The LAN converter is configured to listen on 128.200.109.205:23, and connected to 

the civil-eng-root wireless bridge.  This LAN converter converts the data logger to a 

TCP-IP device enabling the networking.  

 

Software: 

The first software used for this remote data acquisition system is TS-Terminal V2.4, a 

wireless data acquisition software initially by Tokyo Sokushin Co. Ltd. (Fig. 3.1.4).  

With this software, virtually any computer running  TS-Terminal and connected to the 

Internet can access the data logger remotely.  Data can be monitored almost in real 

time on remote terminals.  Data files on the flash memory card at the bridge site data 

logger can be downloaded to the remote terminal and deleted from the flash memory 

(a) Antenna mounted on a steel pole at JRO 
(b) Antenna mounted on a pole at Engineering 
Tower on UC Irvine Campus 
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card.  The remote terminal can send commands to the data logger to trigger the 

recording (to the flash memory card only), calibrate the sensor and change the data 

logger’s setting.  

However, there several fatal problems were discovered in the is project with this 

software: 1)  A remote terminal running the TS-Terminal software cannot record real 

time data stream on its own hard disk; 2)  The stability of the software is not 

satisfactory: especially, system frequently breaks down during downloading multiple 

files from the flash memory card; and 3) most importantly, TS-Terminal was 

developed as a remote terminal, not as a server, therefore, it supports only one online 

user at one time and it does not support data visualization and distribution on internet.  

 

Figure 3.1.4  TS-Terminal Software 
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3.1.3 Development of Communication Software TS-Terminal 

Seeking a solution to the above problems of the TS-Terminal, a new software with a 

remote data acquisition capability was developed by this team at UC Irvine based on 

the platform of TS-Terminal.  The newly developed software (Fig. 3.1.5) has been 

installed on a computer on UCI campus, and functions as a server that receives 

streaming data from the data logger on the remote bridge site, saves them in the local 

computer and buffers them for Internet publication.  The new software has algorithm 

to accommodate data transmission errors during wireless communication, thus 

suffering much less interruptions during data transmission. 

 

Figure 3.1.5  Server Software 
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3.1.4 Development of Server/Client Solution for Real-time Internet 
Waveform Display and Data Acquisition 

Besides this server software, a Java applet was further developed in this project for 

displaying real-time data on Internet.  This Java applet is a client agent that displays 

the waveforms of the data in the buffer of the server (Fig. 3.1.6).  This applet provides 

a way for the public as well as Caltrans to view the real-time data on Internet.  It is 

available at  http://mfeng.calit2.uci.edu/ (Special approval from Caltrans is needed for 

downloading the data).  This pair of server/client software also provides a way to 

verify the working status of the JRO monitoring system.   

 

Figure 3.1.6  Java Applet – Client Software 

 

3.1.5 Power System Upgrade 

To provide sufficient power for the existing data logger, and also the devices added 

for the wireless remote data acquisition system, two additional deep-cycle auto 

rechargeable batteries were installed at JRO in the batteries box (Fig. 3.1.7).  A 

transformer was used to provide DC 38V for the Cisco wireless bridge and the Cisco 
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AIR-ANT3338 Aironet Antenna by these two additional batteries.  Three charging 

controllers were integrated into the system to protect the batteries from over-charging 

or discharging (currently, these controllers are configured to auto-reset after several 

hours if over-charging or discharging is detected).   

 

Figure 3.1.7  Battery Box 

 

3.2 Upgrades of Phase–I WSO Monitoring 
System 

During Phase-II of the research project, data retrieval of the WSO system has been 

proven very difficult.  The major difficulty comes from that fact that the data logger 

was installed inside the box girder due to the unavailability of an easy-to-access 

space.  To access the data logger or to retrieve the data recorded in the memory card, 

one needs to climb into the enclosed box-girder through a man hole.  Entering such an 



 23

enclosure environment requires special training.  To access the man hole, one needs a 

ladder which requires a pick-up truck for its transference.  For safety, accessing the 

man hole is not recommended without proper guidance.   

To cope with these problems, a wireless LAN router and a serial to LAN converter 

were installed inside the box-girder of the WSO.  Figure 3.2.1 shows a system 

configuration of this wireless transmission setup.  With this wireless transmission 

setup, recorded vibration data can be retrieved from the outside box-girder of the 

WSO. 

 

 

 

 

 

 

 

 

Recorded vibration data is retrieved from the data logger through a serial 

communication line.  The serial to LAN converter, which is connected to the data 

logger, converts this serial data to TCP/IP format in order to connect to the wireless 

LAN router.  This converted data is transmitted to the commercially available 

wireless LAN router, which is placed close to the man-hole in the box girder, by 

wired connection.  The wireless LAN router establishes a local area network by using 

Data Logger 
Serial connection LAN 

Serial to LAN 
converter 

Wireless LAN 
router 

Figure 3.2.1 Configuration of Wireless Transmission 

Notebook 
computer 

Outside box girder 

Inside box girder 
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private IP address and broadcasts the vibration data to the outside box girder.  A 

notebook computer, which has a wireless NIC, can receive the broadcasted vibration 

data from the wireless LAN router without entering the enclosed box-girder by 

connecting established local area network.  Although limitation of transmission 

distance of the wireless LAN router is 50 [m] according to its specification, it is 

possible to extend this distance by installing a wireless access point to provide more 

convenience. 

This wireless transmission setup is working stably, and many vibration data has been 

collected on the WSO wirelessly.   

 

3.3  Instrumentation of the 3rd Bridge: FROO 

During Phase II of the research project, a third bridge is instrumented with a sensor 

system consisting of accelerometers, LVDT type strain meters and conventional strain 

gauges, displacement meters, pressure sensors and thermocouples.  

 

3.3.1 Bridge Description 

The Fairview Road On-Ramp Overcrossing (FROO), located in Costa Mesa, Orange 

County, California, is the on-ramp of Fairview Road onto the north bound of I-405 

freeway, overcrossing the Harbor Boulevard off-ramp.  Figure 3.3.1 is a map from 

Google Local showing its location. 
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Figure 3.3.1 Location of the FROO 
 

The FROO is a four-span continuous cast-in-place pre-stressed post-tension box-

girder bridge (Fig. 3.3.2).  The total length of the bridge is 224.0 m (734.9 ft.), in 

which the lengths of spans are 52.5, 59.5, 59.5 and 52.5 m (172.2, 195.2, 195.2 and 

172.2 ft), from span 1 to span 4 respectively (Fig. 3.3.3).  The bridge is supported on 

three monolithic single columns and sliding bearings on both abutments.  The sliding 

bearings (Fig. 3.3.4) allow creep, shrinkage, and thermal expansion or contraction.  

The typical cross section of the box-girder is shown in Fig. 3.3.5. 

Compared with the other two instrumented and monitored bridges (the JRO and the 

WSO), the FROO has more and longer spans.  It enriches the spectrum of the 

monitored bridges.  Instrumentation of this bridge offers opportunities to study and 

understand behaviors of longer span RC bridges where the abutments are expected to 

affect relatively less on the overall bridge dynamic behaviors.  It will be of great 

interest to monitor and evaluate the long-term structural performance of such bridges 

under not only seismic but also service loads, and to compare their performance with 

that of the bridges with less and shorter spans. 

Fairview Road On-
Ramp Overcorossing 
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During Phase II of this research project, the FROO was under going construction.  It 

was completed and opened to the traffic in 2004.  Thus it provided excellent 

opportunity for embedding strain sensors in concrete and pressure sensors in the 

abutments during the construction.  Accelerometers were mounted inside the bridge 

box-girder for better protection.  Based on the experience of data analysis of the other 

two instrumented bridges, the FROO was instrumented with a denser sensor system 

with more accelerometers and strain gauges in comparison with the JRO and WSO. 
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Figure 3.3.2  Plan view of the FROO 

 

 

Figure 3.3.3  Elevation of the FROO
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Figure 3.3.4  Bearing at Abutment 1  

 

 

Figure 3.3.5  Typical Cross-section of the Box-girder  
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3.3.2 Monitoring System Design and Installation 

Accelerometers 

A total of 21 channels of acceleration sensors were installed both on the bridge super- 

and substructures.  As shown in Table 3.3.1 and Fig. 3.3.6, one tri-axial accelerometer 

(A0), five bi-axial (A2, A3, A5, A9 and A12), and eight uni-axial (A1, A4, A6, A7, A8, 

A10, A11 and A13) were installed.  Pictures of a uni-axial, a bi-axial and a tri-axial 

accelerometers are shown in Figures 3.3.7 to 3.3.9.  Except for A0, which was installed 

against the end wall at Abutment 1 to measure the ground motion in the three directions, 

accelerometers (A1 to A13) were mounted on the floor surface inside the box-girder, by 

brackets bolted into the concrete (as shown in Fig. 3.3.10), to measure the superstructure 

vibration at different positions.  A1 to A13 were aligned along the longitudinal center 

line of the box-girder to mitigate the effect of torsional modes.  Again due to the limited 

funding, it was not possible to install additional sensors to measure the torsional modes.  

We recommend to add more sensors to measure the torsional modes when funding 

becomes available in the future.  The positions of A1 to A13 are in respectively in the 

middle and quarter points of the spans.    

The positive directions follow the sign conventions as noted in Table 3.3.1, which 

documents the orientations of the accelerometers.  The sub-column ‘Marked’ in column 

‘Direction’ documents the assigned directions by the sensor manufacturer that were 

marked on the enclosure box of each sensor.  The sub-column ‘Planned’ denotes the 

installation plan.  However, due to the actual difficulties of installation, for example the 

obstacle during concrete drilling, or the miss-match of the bracket orientation, the actual 

‘Installed’ orientation can be different from the plan.  For example, the row for A0 

should be interpreted as: we intended to install the accelerometer marked as (+X) along 
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the positive longitudinal direction (planned +X), but we ended up with installing it along 

the negative vertical direction (installed –Z); similarly, we ended up with installing the 

accelerometer marked with (+Y) and (+Z) along the negative transverse (-Y) and positive 

longitudinal (+X) directions, respectively.  

The cables of the accelerometers (and those of the embedded strain meters) run inside the 

box-girder and through the cap beams on top of the bents (through pre-installed PVC 

pipes).  After the installation, the ceiling slabs of the box-girder were cast and there is no 

access to the sensors on span 2 to 4.  One accelerometer, A6, on span 2 was found to be 

shorted somewhere inside the box-girder and thus not functional.     

For the convenience of future system maintenance, this report documents the detailed 

wiring and splicing maps used in the accelerometer installation.  Figure 3.3.11 shows the 

container box on a concrete pad and the junction box mounted on the wall of Abutment 

1.  The container box houses the data logger, the strain meter conditioner and the 

uninterrupted power supply (UPS) unit, as in Fig. 3.3.12.  The 48-channel 22-bit A/D 

data logger provides the A/D conversion and controls the triggering, timing, sampling, 

recording and data streaming for all the sensors in this system.  It also supplies DC ±15V 

power for the accelerometers.  The 11-channel strain meter conditioner, on the other 

hand, is for the strain gauges and the pressure sensors only (this will be discussed in 

detail later).  The strain and pressure signals, conditioned by this device, are further 

connected to the data logger for A/D.   

The cables of the sensors (the accelerometers, strain gauges, pressure sensors, 

displacement sensor and GPS antenna), going through the conduits, are spliced in the 

junction box following Table 3.3.2.  The spliced cables are then wired to either the data 

logger or the strain meter conditioner, depending on the sensor types.  The DC ±15V 
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power is spliced inside the junction box to provide power for all the accelerometers.  

Figure 3.3.13 documents the detail splicing of the accelerometer cables in the junction 

box.  

Strain Meters (LVDT type) 

Seven LVDT type strain meters were embedded in the bridge superstructure (Fig. 

3.3.14a), and three were embedded in Column 3 (Fig. 3.3.14b).  All these strain meters 

were built on dummy rebars and attached to the steel cage before concrete casting.  After 

the concrete cured, the strain meters are assumed to develop deformations consistent with 

the concrete surrounding them, thus measuring the strain of the concrete at that position.   

Figure 3.3.15 shows the installation positions of the strain meters in the superstructure 

(denoted as SD1 to SD7) .  The purpose of installing these strain meters is to monitor the 

evolution and the lose of pre-stress in the superstructure.  Therefore, they were installed 

along a pre-stressing tendon and aligned horizontally.  The other three strain meters were 

installed in Column 3 (denoted as SC1 to SC3) at the same elevation, measuring vertical 

strains at the three equally dividend points of the periphery of a circular cross section.  

However, one of these three sensors (either SC1 or SC2) was damaged during the 

construction of the bridge.  Nonetheless, the remaining sensors can still serve the major 

purpose of this instrumentation: to obtain information of the static gravity load on 

Column 3.  

A strain meter conditioner supplies 5V DC power to the strain meters, and at the same 

time, conditions the strain signals (Channels 1 to 9 of the conditioner) before sampled by 

a data log (whose channel connection is documented in Table 3.3.2).  A detailed cable 

splicing map is documented in Fig. 3.3.16. 
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Strain Gauge (Resister type)  

In addition to the LVDT type strain meters, conventional resister type strain gauges were 

also embedded in the substructure (Figures 3.3.17 and 3.3.18).  They are used to measure 

strain distribution in the reinforced concrete footing of the columns (Fig. 3.3.18) and as a 

comparison to the LVDT strain meters in Column 3 (Fig. 3.3.17).  Conventional strain 

gauges are not expected to last as long as the LVDT type strain meters, therefore not 

wired to the data logger. A portable strain reader and a temperature compensator can be 

used to acquire data from these strain gauges. Boxes housing the signal conditioner and 

the data log were installed at the column surface above the ground (Fig. 3.3.19). 

Soil Pressure Sensors  

Two soil pressure sensors (P1 and P2, Fig. 3.3.20) were installed between the soil and the 

end walls of Abutment 1 and Abutment 4, respectively.  Sensor installation was 

performed before the backfill of the soil (Fig. 3.3.21).  Pressure sensors are of similar 

sensing mechanism as the LVDT type strain meters, and thus conditioned by the strain 

meter conditioner (Channel 10 and 11) and wired to Channel 42 and 43 of the data log 

(Table 3.3.2).  

Displacement Sensor 

A displacement sensor (D1, Fig. 3.3.22) was installed at Abutment 1 to measure the 

relative displacement between the abutment and the superstructure along the longitudinal 

direction.  This sensor requires 5V DC power which is supplied by a 

converter/transformer installed in the data log housing box.  The sensor data are acquired 

to Channel 44 of the data log (Table 3.3.2).  
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Thermocouples  

Three thermocouples were installed in the superstructure in span 1.  One of them 

measures the outside temperature and the other two the inside temperature of the box 

girder, with the first one installed near the ceiling and the second one near the floor of the 

box girder.  These thermocouples were connected to a signal conditioner that is located 

inside the box girder (Figure 3.3.23).  The conditioner takes in ±15V DC power from the 

data log and supplies to the thermocouples, and at the same time, reads the outputs of the 

thermocouples.  Table 3.3.2 and Fig. 3.3.24 show the details of the splicing.  

Figure 3.3.25 summarizes the current channel assignment of the data logger (SAMTAC-

700).  There are some spare channels for further expansion of the instrumentation system.    
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Table 3.3.1  Installation of Accelerometers 

Direction No. Model No. Serial No. Location Bracket Marked Planned Installed 
A0 SV355T 020723 Abutment 1 Ground No +X,+Y,+Z +X,+Y,+Z -Z, -Y, +X 
A1 SV155T 020729 Beginning of span1 No +X +Y -Y 
A2 SV255T 020724 Middle of span1 Type2 +X, +Y +Y, +Z +Y, +Z 
A3 SV255T 020725 End of span1 No +X, +Y +X, +Y -X, +Y 
A4 SV155T 020730 1/4 point of span2 Type1 +X +Z +Z 
A5 SV255T 020726 1/2 point of span2 Type2 +X, +Y +Y, +Z +Z, +Y 
A6 SV155T 020731 3/4 point of span2 Type1 +X +Z +Z 
A7 SV155T 020732 End of span2 No +X +Y +Y 
A8 SV155T 020733 1/4 point of span3 Type1 +X +Z +Z 
A9 SV255T 020727 1/2 point of span3 Type2 +X, +Y +Y, +Z +Y, +Z 

A10 SV155T 020734 3/4 point of span3 Type1 +X +Z +Z 
A11 SV155T 020735 End of span3 No +X +Y +Y 
A12 SV255T 020728 Middle of span4 Type2 +X, +Y +Y, +Z +Y, +Z 
A13 SV155T 020736 End of span4 No +X +Y +X 

Notes: (a) +X: longitudinal, (from abutment 1 to aboutment5), +Y: transverse, from North to South, +Z: vertical, from bottom to top. (b) Bracket Type1 
is for uni-directional accelerometer, and Type 2 is for bi-directional accelerometer. 

 

 

 

Figure 3.3.6  Schematic Layout of the Accelerometers 

L1/2 L1/2 L4/2 L4/2 L2/4 L2/4 L2/4 L2/4 L3/4 L3/4 L3/4 L3/4 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 

Abutment1 Abutment5 Bent2 Bent3 Bent4 

A0 
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Figure 3.3.7 Picture of a Uni-axial Accelerometer 

 

 

Figure 3.3.8  Pictures of a Bi-axial Accelerometer 
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Figure 3.3.9  Pictures of a Tri-axial Accelerometer 

 

 

Figure 3.3.10  Pictures of Accelerometers Mounted in the Box-girder 

 

(a) A uni-axial accelerometer 
mounted in box-girder without 
bracket 

(b) A bi-axial accelerometer mounted in box-
girder with a bracket to adjust the sensor 
orientations 
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Figure 3.3.11  Picture of the Data-logger Container and the Junction Box  

 

Figure 3.3.12  Data-logger and the Strain Meter Conditioner in the Container 

 

 

Junction Box 

Data logger 
Container 
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Table 3.3.2  Splicing and Wiring Map 

Sensor 
No. & Dir 

as Installed 

Sensor  
No. & Dir  

as Marked 

Other  
Cables 

Splicing  
Cable Tag 

Ch. No. in  
Strain Meter 
Conditioner 

Ch. No. in  
Data Logger 

(-)A0Z A0X  Thick Cable - 19 
(-)A0Y A0Y  Thick Cable - 20 
A0X A0Z  Thick Cable - 21 

(-)A1Y A1X  A1 blue - 9 
A2Y A2X  A2 blue - 10 
A2Z A2Y  8 red - 1 

(-)A3X A3X  A3 blue - 17 
A3Y A3Y  4 red - 11 
A4Z A4X  11 red - 2 
A5Z A5X  A5 blue - 3 
A5Y A5Y  7 red - 12 
A6Z A6X  A6 blue - -- 
A7Y A7X  A7 blue - 13 
A8Z A8X  A8 blue - 5 
A9Y A9X  A9 blue - 14 
A9Z A9Y  12 red - 6 
A10Z A10X  A10 blue - 7 
A11Y A11X  A11 blue - 15 
A12Y A12X  A12 blue - 16 
A12Z A12Y  2 red - 8 
A13X A13X  A13 blue - 18 

  ±15V 13 red - -- 
ANT  GPS 9 red - ANT 
SD1 SD1  SD1 blue 1 33 
SD2 SD2  SD2 blue 2 34 
SD3 SD3  SD3 blue 3 35 
SD4 SD4  SD4 blue 4 36 
SD5 SD5  SD5 blue 5 37 
SD6 SD6  SD6 blue 6 38 
SD7 SD7  SD7 blue 7 39 

SC1/2 SC1  SC1/2 blue 8 40 
SC3 SC3  SC3 blue 9 41 
P1   1 red 10 42 
P2   3 red 11 43 

T DC IN T1  T1 blue - -- 
T1/T2/T3 

OUT T2  T2 blue - 22, 23, 24 

D1 D1  6 red - 44 
Notes:  (a) Symbol (-) marks the sensor with an orientation that is opposite to the assigned positive direction.  
(b) Channel 4 of the datalogger is currently not used, because A6 is found to malfunction.  (c) Currently, 
temperature sensors T1 and T2 are not connected to the datalogger.  (d) The antenna has not received 
GPS signal up to date.  (e) Due to the fading of the marks on SC1, SC2, T1 and T2, SC1 is not 
distinguishable from SC2; to distinguish T1 and T2 it will rely on future data reading and reasonable engineer 
judgment.  (f) Channels 22 to 32, and channels 45 to 48 are currently unused.   
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Figure 3.3.13  Accelerometer Splicing in the Junction Box 
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(a) LVDT Type Strain Meter Installed in the Deck 

 

(b) LVDT Type Strain Meter Installed in the Column 

Figure 3.3.14  LVDT Type Strain Meters Installation 
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Figure 3.3.15  Position of the Strain Meters on the Deck 

 

 

Figure 3.3.16  Strain Meter Splicing in the Junction Box 

 

 

Figure 3.3.17  Conventional Strain Gauge and LVDT Strain Meter Installed in Column 3 
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Figure3.3.18  Conventional Strain Gauges Installed in Footings 
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Figure 3.3.19  Installation of Signal Box for Conventional Strain Gauges 

 

 

Figure 3.3.20  Soil Pressure Sensor 
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Figure 3.3.21  Backfilling at Abutment 1 

 

  

Figure 3.3.22  Displacement Sensor 
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Figure 3.3.23  Thermocouple and Signal Conditioner 

 

 

Figure 3.3.24  Thermocouple Wiring Map 
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Figure 3.3.25  Map of Channel Assignment of the Data-logger 
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Chapter 4 
 

VIBRATION DATA 

This chapter documents vibration data collected on the three instrumented highway 

bridges during Phase II of the research project.   

Each of the data loggers on the three monitoring systems can be set to continuously 

monitor 3 channels of accelerometers and if the signals of these three channels meet 

the selected triggering criteria, the data logger will be automatically triggered to 

record vibration signals of all sensors.  They can also be manually triggered in the 

control panel to record a 1-minute vibration data file.  If a pair of triggering jumper 

wires is used, the data logger can record continuously as long as the jumper is 

engaged.  In this report, the data files recorded in these 3 modes are cataloged as the 

‘triggered’ data, which are recorded in the compact flash memory cards on the data 

logs and retrieved and analyzed off-line.  On the JRO, however, after the system 

upgrades, in addition to these 3 modes we are also able to continuously receive 9 

channels of the on-line data streamed through the wireless system, and save them on 

the server computer.  Data collected in this mode are the ‘streamed’ data. 

Besides the working modes of the data loggers, vibration data are also cataloged by 

the  different types of excitation sources.  The bridge vibrations due to ambient effects 

(e.g. wind) or traffic loads constitute the majority of the collected data.  In this case, 

the excitation on the bridge structure is not measured, but the bridge response to such 

excitation is recorded.  Usually in such ambient/traffic-induced vibration, the 

superstructure response exhibits much larger amplitude than the substructure 
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response, and the vibration is mainly in the vertical direction.  Another excitation 

source is ground motion.  During Phase II of the research project, two moderate 

earthquakes were recorded by the monitoring systems.  These ground motion-induced 

vibrations are both in the transverse and vertical directions.  The ground motion 

sensors pick up considerable vibration at the footing of the substructure, which can be 

considered as the time-history of the ground motion acceleration that excited the 

bridge.   

 

4.1  Ambient/Traffic-Induced Vibration on JRO 

Since the JRO was instrumented with the monitoring system, total of 1712 data sets 

have been collected on this bridge.    

 

4.1.1 Triggered Data 

After analyzing all the collected data it was observed that the maximum transverse 

acceleration in the middle of the span is between 2-20 gal; whereas the maximum 

vertical acceleration ranges between 10-80 gal. Table 4.1.1 documents the triggered 

vibration data that have been collected. 

Table 4.1.1  Summary of Triggered Data on the JRO 

Date Time 
4 max( )a  Date Time 

4 max( )a  

05/03/2002 09.29 12 09/10/2004 18.11 21 

01/24/2003 08.39 42 05/24/2005 19.07 34 

… … … … … … 
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Typical traffic-induced time histories for the vertical and transverse accelerations at 
middle of Span 2 are shown in Fig 4.1.1. 

0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30
V

er
tic

al
 A

cc
el

er
at

io
n 

(g
al

)

0 10 20 30 40 50 60
-10

-5

0

5

10

time (sec)

T
ra

ns
ve

rs
e 

A
cc

el
er

at
io

n 
(g

al
)

 

Fig 4.1.1 Saved Traffic-Induced Vibrations at JRO 

4.1.2. Streamed Data 

Starting August 2006, 5 min long data have been automatically collected every hour. 

The increase of the data length enabled more precise modal identification results.  

Table 4.1.2 documents the streamed vibration data that have been collected. 
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Table 4.1.2  Summary of Streamed Data on the JRO 

Date Time 
4 max( )a  Date Time 

4 max( )a  

08/30/2006 11.00 16 09/17/2006 11.00 23 

09/02/2006 11.00 22 09/30/2006 11.00 36 

… … … … … … 

 

Typical traffic-induced time history for the vertical and transverse accelerations at the 
middle of Span 2 are shown in Fig 4.1.2. 
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Fig 4.1.2  Scheduled Traffic-Induced Vibrations at JRO 
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4.2  Moderate Earthquake on JRO 

On June 16, 2005, a moderate earthquake occurred at 1:53 pm (PDT) in Yucaipa, CA.  

The local magnitude is between 4 to 5 MI, and the distance from the epicenter to the 

JRO is about 105 km (65 miles).  The monitoring system at the JRO was triggered by 

this ground motion and recorded this event.  The record shows a peak ground 

acceleration in North-South of 11.6 gal, in East-West of 13.0 gal and vertical of 3.55 

gal.  These values are consistent with the Shake-Map instrumental intensity maps (Fig. 

4.2.1).  

 

                             Fig. 4.2.1  Instrumental Intensity Map by Shake-map 
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The earthquake records of the selected channels are plotted in Fig. 4.2.2.  One can 

observe that the earthquake excited bridge vibration in the transverse direction more 

than the traffic does.  Transverse vibration (Ch-3) in the middle of span 2 has an 

amplitude of 25 gal, comparable to that of the vertical direction (Ch-4) in the same 

event, but much larger than the transverse vibration induced by traffic.  The bridge 

vibration near the ground, such as Ch-10, is much stronger than that under traffic 

excitation.  Peak ground accelerations for this event are given in Table 4.4.1.  Also 

note that the vertical vibration remains in the same level for both traffic excited and 

earthquake excited vibrations.  One can see the impulse-like pattern in the vertical 

vibration record during the event, indicating vehicles passing the bridge during the 

earthquake event.  
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(b)Earthquake Response 

Figure 4.2.2  Typical Earthquake Records on JRO 
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Table 4.4.1 Peak Ground Motion at the JRO 

Direction Longitudinal Transverse Vertical 

Peak Ground Acceleration (gal) 11.6 13.0 3.6 

 

4.3  Ambient/Traffic-Induced Vibration on 
WSO 

Ever since the WSO bridge was instrumented with a monitoring system, total of 92 

data sets have been collected on this bridge. Some examples can be seen in Table 

4.3.1.  

Table 4.3.1  Summary of Collected Triggered Data on the WSO 

Date Time 
max9 )(a  File Name Date Time 

max10 )(a  File Name 

5/17/05 1:21:29 0.0256 1D62155D 5/17/05 1:21:29 0.1028 1D62155D 

9/26/05 11:31:16 0.0293 1E74B7D0 9/26/05 11:31:16 0.2032 1E74B7D0 

… … … … … … … … 

Typical traffic induced time history for the vertical and transverse accelerations 
recorded at the middle of Span 2 are shown in Fig 4.3.1. 

 

4.4  Moderate Earthquake on WSO 

There was a moderate earthquake on 16 July, 2005. The ground motions of the 

earthquake are shown in Fig. 4.4.1. The peak acceleration of each direction is shown 
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in Table 4.4.1. Unlike the vibration induced by traffic, the transverse direction is most 

dominant component.  

 

(a) Input ground motion 

 

(b) Earthquake response 

Figure 4.4.1 Typical Earthquake Records on WSO 
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Table 4.4.1 Peak Ground Motion at the WSO 

Direction Longitudinal Transverse Vertical 

Peak Ground Acceleration (gal) 5.6 13.6 5.0 

 

4.5  Ambient Vibration Data on FROO 

Figure 4.5.1 shows the typical acceleration time history of the Fairview On Ramp at 

the middle of span 3. In Table 4.5.1 the examples of monitored peak acceleration 

values are shown. 

Table 4.5.1  Summary of collected data on the FROO 

Date Time 
max9 )(a * File Name Date Time 

max9 )(a ** File Name 

3/20/2006 16:05:35 0.3019 20E90163 3/20/2006 16:05:35 0.1826 20E90163 

3/20/2006 16:17:34 0.1755 20E90462 3/20/2006 16:17:34 0.1336 20E90462 

… … … … … … … … 

*: Vertical direction,  ** : Transverse direction.  
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Figure 4.5.1 Time History of FROO (Middle of Span 3) 
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Chapter 5 
 

 STRAIN DATA AND ANALYSIS 

In this chapter, dynamic strain data from the West St. On-Ramp (WSO) under traffic 

loads were analyzed and compared with the those based on moving-load analysis. 

From the results, it was found that in the WSO the transverse mode was excited by 

heavy moving vehicle and it caused higher strain in the column than that predicted in 

the design.   

 

5.1  Strain Sensors and Locations  

The strain sensors were permanently embedded in concrete members of the West 

Street On-Ramp (WSO) during construction. The strain gauges were completely 

welded to dummy reinforcing bars.  The specification of the strain gauges is shown in 

Table 5.1.1. The sensors were installed to measure the dynamic strains induced by 

bending moments. The locations of strain gauges are shown in Fig 5.1.1  
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Table 5.1.1  Strain Gauge Specification 

Parameter Specification 

1. Model ES-500T 

2. Strain range ±1000µ Srain 

3. Average resolution 0.01µ Srain 

4. Average sensitivity 0.55 mV/µStrain 

5. Temperature coefficient 0.7×10-5/°C (-20 to +60°C) 85µV/kg 

6. Gauge length 500mm 

7. Frequency response DC - 50Hz 

8. Cable 4 Conductor, shielded (Extensible length 300m) 

 

 

 

Fig.5.1.1 Strain gauge locations of WSO 
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5.2 Characteristics of Dynamic Strain Data  

The dynamic strain time history of each sensor assembles the moment influence line 

at the sensor location.  In this section, the characteristics of the dynamic strain time 

history were discussed in comparison with the static moment influence line.  

  

5.2.1  R1 and R10 

The strain gauges R1 and R10 are embedded in the girder near Abutment 1 of the 

bridge. R1 is located in the outer girder while R10 inner girder. As shown in 

Figure.5.2.1, the influence line of the moment at R1 and R10 shows sharp increase 

and gradual decrease. The same trend was observed from the recorded data for R1 as 

shown in Figure 5.2.2. From the influence line and the recorded data, one can observe 

that when a vehicle enters the bridge the strain at R1 increases abruptly and as the 

vehicle passes through, the strain decreases gradually. However, as depicted in Figure 

5.2.3, R10 does not show the same pattern as R1.  It is considered that R10 is not 

reliable.  

 

 

Figure.5.2.1 Influence Line for R1 and R10 
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Figure.5.2.2 Strain Time History of R1  

 

Figure.5.2.3 Strain Time History of R10 

 

5.2.2  R2 and R3 

Sensors R2 and R3 are located in the outside girder above column 2 outside of the 

diaphragm.  R2 is embedded in the upper part of the girder while R3 in the lower part 

of the girder.  Influence lines for R2 and R3 are respectively shown in Figures 5.2.4 

and 5.2.5.  Because these two strain gauges are located in the upper and lower parts of 

the same cross section, they show opposite strain signs at the same time.  From the 

influence lines, it can be inferred that the strain value is higher when vehicle traverses 

on span 1 than other spans, and each influence line has two peaks.  
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Figure.5.2.4 Influence Line of R2 

 

Figure. 5.2.5 Influence Line of R3 

 

Similar trend is observed from the time histories of R2 and R3. The recorded time 

history of R2 and R3 are shown in Figures 5.2.6 and 5.2.7.  

 

 

Figure.5.2.6 Strain Time History of R2 
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Figure. 5.2.7 Strain Time History of R3 

 

5.2.3  R4, R5, and R6 

The strain sensors R4, R5, and R6 are located in the column 2 under the ground level. 

The location of each sensor can be seen in Figure. 5.1.3. The influence line of R4 in 

Figure.5.2.8 shows one and half cycle. The same trend can be seen from strain time 

history of R4 in Figure.5.2.9. It should be noted that  the strain sensors located in the 

column shows both signs with almost the same strain values for both tension and 

compression. It means that the column experiences both tension and compression 

when vehicle traverses the bridge. 

 

 

Figure.5.2.8 Influence Line of R4 
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R5 and R6 are located on the opposite side of the column 2 in the transverse direction. 

Thus, when R5 is in tension then R6 is in compression and vice versa.  Therefore it 

can be inferred that R5 and R6 show approximately the same strain value with 

opposite signs. The recorded strain time histories of R5 and R6 are shown in Figures 

5.2.10 and 5.2.11.  

 

Figure.5.2.9 Strain Time History of R4 

 

Figure. 5.2.10 Strain Time History of R5 

 

Figure.5.2.11 Strain Time History of R6 
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5.2.4  R7, R8, and R9 

The sensors R7, R8, and R9 are embedded in the middle of span 2. R7 is located at 

the upper part of the outside girder. R8 and R9 are located at the lower part of the 

girder. R8 is in the outside girder and R9 in the inside girder. The moment at the 

middle of span 2 is negative when a moving vehicle is located on the span 1 and 3 but 

it is positive on the span 2.  

Figures 5.2.12 and 5.2.13 show the influence lines of R7 and R8 (R9) respectively. 

Since R7 is located at the upper part of the girder, the strain data should show the 

exact opposite sign to R8 and R9.  As depicted in Figure 5.2.14, however, the 

monitored data at R7 did not show the expected trend. The sensor at R7 is believed to 

be out of order.  Figures 5.2.15 and 5.2.16 show the time histories of the strains at R8 

and R9. The shape of the time histories is the same as the compressed shape of 

influence line of R8.   

 

 

Figure. 5.2.12 Influence Line of R7 

 

Figure. 5.2.13 Influence Line of R8 and R9 
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Figure. 5.2.14 Strain Time History of R7 

 

 

Figure. 5.2.15 Strain Time History of R8 

 

 

Figure. 5.2.16 Strain Time History of R9 
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5.3 Comparison of Measured and Computed 
Strain 

The maximum and minimum strains measured by each strain sensor were compared 

with that computed from the moving load analysis.  The dynamic effect of the design 

live load was represented by employing an impact factor. The centrifugal force due to 

the curvature of the bridge was also considered in the analysis.  The computed 

maximum strains of in the girder showed higher values than those from the 

measurement. However, the measured strains of the column were higher than the 

computed ones. From analysis of the measured strains and accelerations, the high 

strains at the columns were attributed to the transverse vibration excited by moving 

vehicles. 

 

5.3.1 Measured Maximum Strain 

(1) R1 and R10 

The maximum strain of each data sets for R1 and R10 is shown in Figure. 5.3.1. The 

maximum strain values of R1 and R10 are 2.282µ and 2.246µ respectively. Though 

the maximum strain of these two strain sensors is nearly the same, the average strain 

of R10 is much smaller than R1. The average strain of R1 and R10 is 1.047µ and 

0.614µ. The maximum values and the average values of all the strain sensors are 

shown in Table 5.3.1. 
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Figure.5.3.1 Maximum Strain of R1 and R10 

 

Table 5.3.1  Measured  Strain 

Sensor Maximum (µ) Max. Average (µ) Minimum (µ) 
Min. Average 

(µ) 

R1 2.282 1.047 -0.641 -0.298 

R2 6.686 2.726 -3.222 -0.635 

R3 3.312 0.831 -7.751 -3.482 

R4 5.364 1.072 -4.138 -1.451 

R5 11.132 2.463 -14.828 -4.738 

R6 12.745 2.379 -7.326 -2.049 

R7 0.440 0.256 -0.399 -0.249 

R8 18.513 6.494 -5.204 -1.640 

R9 21.471 10.317 -7.035 -2.2132 

R10 2.246 0.614 -1.489 -0.505 
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Figure. 5.3.2 Maximum Strain of R2 and R3 

 

(2) R2 and R3 

The maximum strain values of R2 and R3 are shown in Figure. 5.3.2. Because of the 

sensor locations of R2 and R3, the maximum strain at R2 corresponds to the 

minimum one at R3.  The largest strain of R2 is 6.686µ while the smallest value of R3 

is –7.751µ. The average strain value of R2 and R3 is 2.726µ and –3.482µ.  

 

 (3) R4, R5, and R6 

The maximum and minimum strain of R4, R5, and R6 are shown in Figures 5.3.3 

through 5.3.5.  From Figure 5.3.3 the maximum tensile and compressive strain of R4 

are approximately the same.  It means that the column experiences the same negative 

and positive moment in the longitudinal direction. Figures 5.3.4 and 5.3.5 for R5 and 
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R6 indicate that column 2 is subject to both negative and positive moments in the 

transverse direction as well.  

The maximum tensile and compressive strains of R4 are 5.364µ and –4.138µ 

respectively.  The maximum and minimum strain of R5 are 11.132µ, –14.828µ, and 

those of R6 are 12.745µ and –7.326µ respectively.  
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Figure. 5.3.3 Maximum and Minimum Strain of R4 
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Figure. 5.3.4 Maximum Strain of R5 and Minimum strain of R6 
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Figure. 5.3.5 Maximum Strain of R6 and Minimum Strain of R5 
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(4) R7, R8, and R9 

Figure 5.3.6 shows the minimum strain at R7 while Figure 5.3.7 the maximum strains 

at R8 and R9.  Considering the locations of R7 and R8 or R9, the absolute strain value 

of R7 should be similar to that of R8 or R9, but all the strain values of R7 are between 

0 and -0.4µ.  The strain sensor at R7 is thus considered to be out of order. 

The maximum values of strains at R8 and R9 are respectively 18.513µ and 21.471µ. 

It is found that the strain at R9 is larger than that at R8. The average strain of R8 is 

6.494µ and that of R9 is 10.317µ. The strain difference between R8 and R9 is 

attributed to the their locations; R9 is located in the inside girder while R8 the outside 

girder.  
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Figure. 5.3.6 Minimum Strain of R7 
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Figure. 5.3.7 Maximum Strain of R8 and R9 

 

5.3.2 Finite Element Analysis under Design Live Load 

(1) Finite Element Model 

For the comparison of the monitored strain data with analytical one, finite element 

(FE) analysis was carried out.  Three-dimensional beam elements were used for the 

deck and column components of the bridge. The superstructure has 12% inclination in 

the transverse direction and it was represented using the angular rotation of the 

element local axis. The superstructure was modeled with totally 200 beam elements 

and a column with 16 beam elements. Figure.5.3.8 shows the FE model of the bridge.  
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Figure. 5.3.8 Finite Element Model of WSO 

        

 

Figure. 5.3.9 HS 20-44 Load 

The most difficult aspect is to model the bridge boundary conditions - the column 

footing and abutments realistically and accurately.  Considering that the use of the 

model is for analyzing the bridge response to operational traffic loads, the abutment 

bearings of the bridge were modeled as linear horizontal, vertical, and rotational 

springs, while the footing piles as fixed. The bearing stiffness values at both the 

abutments were assigned according to FHWA (1996) as 6.58×104 kip/ft for the 

longitudinal springs, and 1.29×105 kip/ft and 1.48×105 kip/ft for the transverse and 

vertical springs respectively. The rotational spring stiffness are 6.29×107 kip-ft/rad 
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and 3.5×107 kip-ft/rad for longitudinal and transverse direction axis.   It is noted that 

these values were used for the preliminary finite element analysis.  They later were 

identified and updated by the vibration measurement as shown in Chapter 9. 

(2) Moving vehicle load  

The design live load HS 20-44 load was used for moving vehicle load analysis. Figure 

5.3.9 shows the axial load and spacing of the HS 20-44 load. The total axial load of 

HS20-44 is 72kips and the width of the truck is 10 feet.  The WSO has two traffic 

lanes of 24 feet but the possible traffic passage lanes were defined based on the width 

of HS20-44.  A total of 12 lanes were defined as shown in Figure5.3.10.  The lanes 

from R3 to R8 are located on the inside of the horizontal curvature of the bridge and 

the lanes from L3 to L8 on the outside. The number after ‘R’ and ‘L’ represents the 

eccentricity of the lane from the center of the bridge.  

 

 

Figure. 5.3.10 Lanes for moving load analysis 

 

(3) Centrifugal Force  

Centrifugal force exerted by moving vehicles due to the curvature of the bridge was 

considered in the finite element model according to the design specification. 
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Centrifugal force was taken as the product of the axle weights of the design truck and 

the factor C computed as: 

gR
VC

2

3
4

=  

where: 

V= vehicle speed (ft/sec) 

g = gravitational acceleration: 32.2 (ft/sec) 

R= radius of curvature of traffic lane (ft) 

 

Centrifugal forces were applied horizontally at a distance 6.0 feet above the roadway 

surface. It was found from the finite element analysis that girder strain under 

centrifugal forces was less than 1.5μ but the column strain was more than 6μ.   So 

the centrifugal forces affected more on the column strain than the girder strain.  

 

(4) Strain sensitivity to lanes 

Figure. 5.3.11 to 5.3.16 show the strain at each sensor location from the FE analysis 

and Table 5.3.2 summarizes the FE analysis results together with the monitored data. 

From the figures it can be seen that each strain varies according to the vehicle 

location. Sensitivity coefficient S is defined in Eq. (5-1) in order to compare the 

sensitivities of each strain sensor to the vehicle location. 

100(%)
min

minmax ×
−

=
µ

µµ
S                                                       (5-1) 

where  S : Sensitivity 

maxµ : Maximum strain value of FE results  

       minµ : Maximum strain value of FE results  
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The sensitivity coefficients for all the strain sensors are plotted in Figures 5.3.11 

through 5.3. 16.  The sensitivity of R1 and R10 is 2.82% and that of R2 and R3 is 

52.82% while the sensitivity of R7, R8, and R9 is 40.68%. The sensitivity values of 

R1 and R10 are very low compared with those of other sensors. These two sensors are 

installed near the abutment (entrance) of the bridge, and thus the moment does not 

change much due to the different locations of the vehicle. The large sensitivity values 

for the sensors installed in the girder above the column 2 and at the middle of span 2 

imply that the moments at those locations are quite dependent on the location of 

vehicle load in the transverse direction.  

The column, as mentioned earlier, shows both tensile and compressive strains when a 

vehicle traverses the bridge. The sensitivity values for the column are quite different 

for tension and compression. For example, the sensitivity value of R4 is 84.51% for 

tensile strain and 29.51% for compressive strain, and those for R5 (R6) are 226.64% 

and 4.61%. Though the absolute strain values are not large compared with those of R8 

and R9, the sensitivity values of the column are much larger than those of the girder.  
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Figure. 5.3.11 Strain R1 and R10 due to Vehicle Locations 
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Figure. 5.3.12 Strain R2 and R3 due to Vehicle Locations 
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Figure. 5.3.13 Strain  R4 due to Vehicle Locations 
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Figure. 5.3.14 Strain R5 due to Vehicle Locations 
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Figure. 5.3.15 Strain R6 due to Vehicle Locations 
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Figure. 5.3.16 Strain R7, R8, and R9 from Finite Element Analysis 
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5.3.3 Comparison of Strain Data 

Table 5.3.2 shows the maximum and minimum strains of each strain sensor extracted 

from the recorded 92 data sets, in comparison with those from the finite element 

analysis. Sensors R1 and R10 are located at the girder near the entrance of the bridge.  

The recorded maximum strains at R1 and R10 are nearly twice higher than those from 

the analysis.  This is due to the impact at the expansion joint of the bridge 

superstructure at the entrance of the bridge.  This impact was not considered in the 

finite element analysis.  

Table 5.3.2  Strain from measurement and analysis 

Sensor Monitored (µ) (1) Computed (µ) (2) 
Difference (%) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
= 100

)2(
)1()2(

 
R1 2.282 0.801 (185) 

R2 6.686 10.595 37 

R3 -7.751 -24.307 68 

Max 5.364 15.280 65 
R4 

Min -4.138 -17.862 77 

Max 11.132 6.391 (74) 
R5 

Min -14.828 -9.905 (50) 

Max 12.745 9.905 (29) 
R6 

Min -7.326 -6.391 (15) 

R7* 0.440 -13.178 - 

R8 18.513 19.360 4 

R9 21.471 30.771 30 

R10 2.246 0.801 (180) 

* : out of order 
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From Table 5.3.2 the difference between the computed and measured strains at R2 

and R3 (on the girder on the top of column 2) are higher than those at R8 and R9 (on 

the girder in the middle of span 2).  The measured maximum strains at the box girder 

above column 2 are much higher than the computed ones, while the difference is 

much smaller in the middle of span 2.  This implies that the load capacity of the box 

girder above the column is higher than that of the middle of span 2.  On the other 

hand, the strain difference inside column 2 depends on the direction.  At R4 (in the 

longitudinal direction), the strain difference is 65% but at 5 and R6 (in the transverse 

direction) they are respectively –74% and 22%.  The negative strain difference of R5 

means that the recorded maximum strain exceeds the computed maximum strain. 

0

2

4

6

8

10

12

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91
No. of Data

St
ra

in
 (x

10
6 )

Measured
Computed

 

Fig. 5.3.17  Long-term monitored data of R5 

Figure 5.3.17 shows the maximum strain envelop of R5 from the monitored data set.  

The solid line is the strain obtained from the finite element analysis under the HS-20 

design load.  A typical time history of R5, whose maximum value is near the 

computed strain, is shown in Figs.5.3.18 (a) and (b), in comparison with acceleration 

A5 recorded at the same time.  
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(a) A5 (deck-above column :trans. dir.) 

 

(b) R5 (bottom of column) 

(c) PSD of A5 (d) PSD of R5 

Fig. 5.3.18 Monitored time histories and their power spectral density (6/28/2006) 
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Fig. 5.3.19 Power spectral density of acceleration (transverse direction) 

 

Fig. 5.3.20 The fourth mode shape (transverse direction) 

Figures 5.3.18 (c) and (d) plot the power spectral density (PSD) of A5 and R5.  The 

dominant frequencies identified from the acceleration (A5) and strain (R5) time 

histories are identical and close to the fourth mode frequency of the bridge in Fig. 

5.3.19.  Figure 5.3.20 shows the fourth mode shape of the bridge in the transverse 

direction from the analysis and measurement. It is clear that the moving heavy vehicle 

excited the fourth ode of the bridge, resulting in higher strain in column 2 in the 

transverse direction, as shown in Fig.5.3.18 (b), than that expected from analysis. 
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5.3 Summary 

In the strain analysis, the measured strain from the WSO was compared with 

computed one.  Because input vehicle loads could not be measured, the results of 

strain analysis can be interpreted only in a qualitative way. From the comparison of 

the measured and computed strain, it is found that generally the bridge superstructure 

was more conservatively designed than the column under moving vehicle load. It is 

also noted that the column of the WSO was more affected by heavy moving vehicles 

than the superstructure.  From the frequency analysis of the acceleration and strain 

measured column, it was found that some vehicles excited the transverse mode of the 

bridge resulting in higher strain in the column than that expected from analysis. The 

design based on the dynamic factor underestimate the strain in the column.   
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Chapter 6 

DEVELOPMENT OF STRUCTURAL 

HEALTH MONITORING 

METHODOLOGIES 

This chapter presents methodologies developed for identifying the structural “health” 

conditions of highway bridges.   

 

6.1 Definition of Structural Health and Damage 

Structural elemental stiffness is proposed to be an indicator of the structural “health”.  

As a structure deteriorates due to aging or suffers from damage by extreme events 

such as earthquakes, the structural stiffness will degrade, and as a result, the global 

dynamic characteristics of the structure will change.  Therefore, by measuring the 

structural vibration, it is possible to identify the change in structural dynamic 

characteristics, and furthermore change in structural stiffness.  When the reduction in 

structural stiffness exceeds a certain threshold, the structure is defined as damaged.  

The use of structural stiffness enables assessment of not only extent but also locations 

of damage.   
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6.2 System Identification Methodologies 

In this project, a number of system identification methods were developed for 

identifying structural elemental stiffness based on structural vibration responses to 

traffic or earthquake excitations.  For assessing the bridge superstructure health, it is 

proposed to use traffic-induced vibration as the moving vehicle induces high-

amplitude vertical vibrations.  For this purpose, a unique traffic excitation model was 

developed that incorporates partial traffic information based on video monitoring, and 

as a result it is more realistic than the conventional assumption of white noise.  

Bayesian updating and neural network system identification methods were developed 

for identification of bridge structures based on traffic excitations.   

For assessing seismic damage that usually occurs in bridge columns, it is proposed to 

use seismic-induced vibrations.  Because the damaged structure is a nonlinear system 

while most of the available system identification methods are for linear systems, the 

project developed a special system identification method based on the extended 

Kalman filtering that can deal with nonlinear systems.   

The following provides a literature review of related system identification methods.  

System identification methods for structures based on vibration measurement can be 

grouped into two depending on whether the identification is carried out in frequency 

or time domain, as shown in Figure 6.2.1.  If it is in frequency domain, basically the 

changes in modal values; frequency, damping, shape, are used as an indication of 

damage. However; if one wants to identify the changes more in detail like changes in 

elemental stiffness, time domain identification methods might be more appropriate.  

Time domain methods can be grouped into two depending on whether they are purely 

data driven or they are incorporating FE model.  If it is aimed to determine the 

changes in the stiffness values, FE model must always be used.  Within time domain 

identification methods, the most common one is the least squares estimation (LSE).  It 

is basically performing an optimization for the parameters such as stiffness and 
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damping so that the error between the measured and the simulated responses is 

minimized.  LSE is useful as a system identification technique, when used in 

combination with a damage detection algorithm (Stubbs et al, 2000).  However, there 

are some drawbacks of LSE. Firstly, physical insight can be easily lost and a local 

maximum can be chosen over a global one. Secondly, LSE is very time consuming 

and cannot be applied for “on-line” structural health monitoring and damage 

detection. To overcome this difficulty, the recursive least squares (RLS) technique is 

proposed so that any time varying property in a system caused by damage can be 

tracked in real time. However in this case incorporation of FE is sacrificed, i.e. it is 

purely data driven so change in the system parameters can be tracked but it is not 

possible to link this to the change in structural stiffness and damping. Also, RLS is 

susceptible to even low level of noise. As can be seen every method has some 

drawbacks and is not effective for on-line identification of stiffness values under 

realistic conditions.  

Kalman filtering was a break-through in system engineering field when first proposed 

four decades ago. It not only uses the data in a probabilistic sense but also gets 

information from structural model (Kalman, 1960). Results obtained by the Extended 

Kalman Filter (EKF) approach from simulated data and well defined models with 

known damage scenarios were reported (Yun and Shinozuka, 1980; Hoshiya and 

Saito, 1984; Yang et al, 2005; Straser and Kiremidjian, 1996; Loh and Chung, 1993; 

Loh and Tou, 1995, Ghanem and Ferro, 2006). However, applicability of the EKF 

approach to civil engineering structures involving high uncertainties in structures and 

loadings under realistic damaging events has not yet been studied. This research effort 

can be seen within this report. 



 88

 

Figure 6.2.1 System Identification Methodologies 
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6.3 Traffic Excitation Modeling and Super-

Structure Condition Assessment 

Since it is impossible to measure the input traffic excitation on a bridge, a stochastic 

model of traffic excitation on bridges is developed in this project, by assuming that 

vehicles traversing a bridge (modeled as an elastic beam) arrive in accordance with a 

Poisson process, and that the contact force of a vehicle on the bridge deck can be 

converted to equivalent dynamic loads at the nodes of the beam elements.  The 

parameters in this model, such as the Poisson arrival rate and the stochastic 

distribution of vehicle speeds, are obtained by image processing of the traffic video.  

The model reveals that traffic excitation on bridges is spatially correlated.  Partial 

traffic information expressed by the stochastic model is incorporated in a Bayesian 

framework to evaluate the structural properties and update their uncertainty for 

condition assessment of the bridge superstructure.  The vehicle weights are also 

estimated simultaneously in this procedure.  This method is validated in the testbed. 

6.3.1 Output-Only System Identification 

The desirableness of measuring vibration responses of an instrumented highway 

bridge to traffic excitations for a long-term SHM purpose has been addressed by 

many authors.  To list a few of its practical advantages over other bridge structural 

condition assessment methods: (I) It does not interrupt traffics; (II) It captures the in-

situ dynamic behavior of the bridge undergoing its normal service; (III) It can be 

performed continuously, scheduled periodically or triggered automatically and (IV) It 

requires no special experimental arrangement or a heavy shaker/hammer.  During 

such measurements, however, the excitation loads are neither controllable nor (easily) 

measurable.  Thus, to extract the structural properties of the bridge from the vibration 

data, system identification is performed based only on the measured time histories of 

the bridge responses (system output) without measuring the traffic excitations (system 
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input).  As a result, to facilitate such output-only identification of structural properties, 

models or assumptions representing the stochastic characteristics of the input must be 

established a priori, otherwise there can be various combinations between bridge 

structural properties and excitation loads that might have resulted in the same 

measured vibration responses.   

In recent years, several output-only identification techniques have been developed.  

These include the natural excitation technique (Caicedo et al., 2004; James et al., 

1996; Shen et al., 2003), the frequency domain decomposition (Brincker et al., 2001; 

Feng et al. 2004), the subspace decomposition (Peeters et al., 2001), the random 

decrement technique (Asmussen and Brincker, 1996; Feng and Kim, 1998) and 

various types of ARMA model fitting techniques (Garibaldi et al., 1998; Huang, 2001; 

Jensen et al., 1992).  A common assumption in these output-only techniques is the 

spatially uncorrelated white noise input model (referred to hereafter as the 

conventional excitation model).  In mathematical terms, the conventional model has 

an input covariance matrix that conforms to cov[ ( ), ( )] ( )t t t tδ+ ∆ = ∆ ⋅F F Σ , where Σ is a 

matrix constant and the Dirac’s delta function δ(∆t) is non-zero only when 0t∆ = .  

Note that F(t) is the input vector at time t, a multivariate random process with its i-th 

component Fi(t) being the random input at the i-th spatial location (or degree-of-

freedom, DOF).  Despite its mathematical attractiveness, the conventional excitation 

model can be inadequate to account for the operational variations of the excitation on 

a bridge, and moreover, it incorrectly excludes the correlation between excitation 

processes at different spatial points when ∆t ≠ 0, which indeed, is an intrinsic 

characteristic of the traffic excitation. 

In this section, a stochastic model of traffic excitation on bridges is developed based 

on the physics of moving loads traversing a beam, taking into account various sources 

of randomness, to accommodate the operational variation of the traffic on a bridge.  
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6.3.2 Physical Formulation of Traffic Loads on a Bridge 

When a vehicle traverses a short- to medium-span highway bridge, which is usually 

rather rigid with, for example, concrete box-girders, the bridge-vehicle system can be 

sufficiently decoupled to a beam-moving force model (Cebon, 1999; Pan and Li, 2002; 

Pesterev et al., 2003; Pesterev et al., 2004; Schenk and Bergman, 2003; Yang et al., 

2000), i.e., the bridge (modeled as an elastic beam) is subjected to a time-variant tire 

force ( )P t  moving across it.  In this study, ( )P t  is taken as a constant P for each of 

the passing vehicles, which can account for the static tire force, or the weight of the 

vehicle.  The dynamic variation of tire force is considered either (I) having a higher 

frequency than the interested bridge frequency, or (II) having a broad-band contain, so 

that the dynamic vehicle-bridge interaction can be ignored in the bridge frequency 

bandwidth.  This assumption applies to most of the vehicles, which have a natural 

frequency between 10 to 15Hz, higher than the bridge frequency (usually 1-5Hz), 

except for very heavy trucks whose frequency can be as low as 2-10 Hz (Cebon, 

1999).  This formulation is schematically shown in Figure. 6.3.1, where m , c , E  

and I  are the mass per unit length, the damping coefficient, the Young’s modulus and 

the cross-sectional moment of inertial of the bridge girder, respectively, v is the speed 

of the vehicle, and by  is the vertical deflection of the bridge with respect to the 

equilibrium position.  The governing equation of motion for ( )by t  is 
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2 4

2 4( , ) ( , ) ( , ) ( )b b bm y x t c y x t EI y x t x vt P
t t x

δ∂ ∂ ∂
+ + = − −

∂ ∂ ∂
     (6.1) 

 

 Figure 6.3.1 Beam-moving Force Model  

 

When multiple vehicles move across the bridge, the vehicle arrival can be assumed to 

follow a Poisson process with mean rate γ  (Shinozuka and Kobori, 1972; Turner and 

Pretlove, 1988).  Assuming that the i-th vehicle traverses the bridge with a constant 

speed vi, the right hand side of Eq. (6.1) can be replaced by 

 
( )

1
( ) [ ( )]

N t

x i i i
i

F t P x v tδ τ
=

= − − −∑      (6.2) 

where, ( )xF t  is the time history of traffic force at location x  on the bridge; ( )N t  is 

the number of vehicle arrivals during time interval [0, )t , and 1τ , 2τ , ⋅⋅⋅, iτ , ⋅⋅⋅, ( )N tτ  

are the sequence of arrival times.  iP  is the weight of the i-th vehicle.  { iP } ( 1i =  to 

N(t)) are independent random variables identically distributed as a random variable P, 

independent to the Poisson process, with second order statistic E(P2) = SP.  iv  is the 

speed of the i-th vehicle.  { iv } ( 1i =  to N(t)) are independent random variables 

identically distributed as a random variable v, normally distributed with mean µv and 

standard deviation σv, independent to { iP } and the Poisson process as well. 

Note that in this formulation, each vehicle has its own weight and traveling speed, 

which allows for accounting the stochastic distributions of these traffic properties in 

the excitation model.  

P y 

x

IEcm ,,,
v
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Equation (6.2) defines a filtered Poisson process ( )xF t .  See e.g. Parzen (1962) for a 

formal definition, terminology and account of the properties of a filtered Poisson 

Process.   

For computing the bridge response to moving vehicles, Pan and Li (2002) proposed 

the dynamic nodal loading (DNL) method.  In the DNL method, the time-variant 

moving force is converted into load histories at each of the nodes in the finite element 

(FE) model based on the equivalent nodal forces (ENFs) concept.   

Let the bridge girders be modeled by beam elements with 2 DOFs at each node, 

namely, the vertical displacement iy  and the in-plane rotation iθ  at node i.  It has 

been established that a vertical force P applied within the beam element is equivalent 

to the combined action of a nodal shear iQ  and a nodal moment iM  (the ENFs) acting 

at the nodes (Hibbeler, 2002).  When the force moves across the beam elements, the 

ENFs are functions of the position of the moving force (Figure. 6.3.2). 

 

 Figure 6.3.2  ENFs at Node i.  
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When the moving force P  is a unit constant, and its speed v also constant, the ENFs 

are 
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  (6.4) 

where, il  and 1il −  are depicted in Figure. 6.3.2, representing the lengths of elements 

on the right and left of node i, respectively;  ix  is the coordinate of node i; while 

( , )Q
iW t v  and ( , )M

iW t v  are defined as the ‘ENF functions’ for the shear and moment 

at node i, with the superscripts Q and M corresponding to shear and moment, 

respectively. 

By establishing an FE model of the bridge girder and converting the moving force 

into the ENFs on all the nodes, the moving force problem is converted to a classical 

time-history analysis problem with a random excitation history at each node, e.g., the 

equivalent forces at node i are now 

 
( )

1
( ) ( , )

N t
Q Q

i j i j j
j

F t PW t vτ
=

= − −∑      (6.5) 
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( )

1
( ) ( , )

N t
M M

i j i j j
j

F t PW t vτ
=

= − −∑     (6.6) 

Equations (6.5) and (6.6) indicate that ( )Q
iF t  and ( )M

iF t  are both filtered Poisson 

processes, in which, jP  and jv  are both characteristic variables independent to the 

driving Poisson process and independent to each other.  This is slightly different than 

the classical definition of a filtered Poison process, where there is only one 

independent characteristic variable.  However, multiple characteristic variables, or 

represented by a random vector, can be accommodated in the extended Campbell’s 

theorem, as long as their joint distribution is given.  The response function, either 

( , )Q
iPW t v  or ( , )M

iPW t v , is argumented by random variables P and v, and by 

deterministic { ix , il , 1il − } for a given node i.  

6.3.3 Traffic Excitation Covariance Model 

Now, consider two ENFs, either of the two types at the same node: ( )Q
iF t  and ( )M

iF t , 

or of same or different types at different locations, i.e.: ( )Q
iF t  and ( )Q

jF t , ( )M
iF t  and 

( )M
jF t , or ( )Q

iF t and ( )M
jF t .  They are different filtered Poisson processes driven by 

the same underlying Poisson process {N(t)}.  Covariance between them is, for 

example, 

2cov[ ( ), ( )] ( ) ( , ) ( , ) ( )Q M Q M
i j i j vF t F s E P W t v W s v f v dvdγ τ τ τ

∞ ∞

−∞ −∞

= − −∫ ∫  (6.7) 

where, ( )vf v  is the probability density function of vehicle speed v.  Assuming normal 

distribution with mean vµ  and standard deviation vσ ,  

( )2

2

1( ) exp
22

v
v

vv

v
f v

µ
σσ π

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
    (6.8) 
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Equation (6.7) is a model of traffic excitation on a bridge, representing its stochastic 

characteristics.  The model parameters include: (I) the geometry of a FE model of a 

bridge, which is deterministic for a specific problem; and the stochastic distribution of 

the traffic characteristics, namely, (II) the mean rate of vehicle arrivals, γ , (III) the 

second order statistic of vehicle weights, E(P2) = SP , and (IV) statistics of the vehicle 

speed vµ  and vσ .  Parameters γ , vµ  and vσ  are obtainable from traffic video, as to 

be shown later; SP is considered time-variant, SP = A2(t), to account for the variation 

of the traffic condition.  Therefore, even in the case that the underlining Poisson 

process of vehicle arrivals and the vehicle speed distribution are stationary, the traffic 

excitation processes could still be non-stationary. 

Equation (6.7) can be numerically evaluated by double quadrature, given the 

geometry and the parameters.  A numerical example is given to demonstrate this 

procedure and some important natures of traffic excitation.  

In this example, a segment of a bridge deck is modeled as beam elements with various 

lengths, as depicted in Figure. 6.3.3.  Covariances of ENFs at various nodes against 

ENFs at the first node n1 are computed, according to Eq. (6.7).  Mean rate of vehicle 

arrivals γ  is taken to be 2 per second.  SP is taken to be unit, because this will only 

affect the scale of covariance amplitude.  Two cases of vehicle speed distribution are 

assigned and the results are compared.  In Case 1, vµ = 20 m/s (45 mile/h, the normal 

traffic speed on a typical highway bridge), vσ = 5 m/s (11.3 mile/h); while in Case 2, 

vµ = 30 m/s (67.5 mile/h, relative high speed) and vσ = 5 m/s.  In the numerical 

double quadrature, the upper and lower limits of integration for variable v are taken to 

be 3v vµ σ±  to account for the major portion of the distribution of v.  The upper limit 

for variable τ is the larger between t and s, while the lower limit is sufficiently small 

to account for the vehicles that arrive before counting start.  Typical results are 

graphed in 3D plots (Figures 6.3.4 to 6.3.7) showing covariance as a function of (s-t), 

for ENFs at different nodes at spatial coordinate (xi-x1).  Note that the dependence of 
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the spatial coordinate (xi-x1) on a specific point (n1) is due only to the unequal element 

lengths; otherwise, the processes are both temporally stationary and spatially 

homogeneous.   

Figure 6.3.3 Geometry of a Finite Element Model  

 

Figures 6.3.4 and 6.3.5 show 1cov[ ( ), ( )]Q Q
iF t F s  for Cases 1 and 2 respectively, while 

Figures. 6.3.6 and 6.3.7 show 1cov[ ( ), ( )]M Q
iF t F s  for Cases 1 and 2 respectively.  

From these figures, one can observe the following interesting phenomena.   

I) Covariances as temporal functions of (s-t) of the same types of ENFs (either QQ, 

MM, MQ or QM) are of similar shapes for different nodes at various spatial 

coordinates.  The shape is determined by the shapes of the ENF functions involved in 

the covariance, as can be seen from these figures, QQ type covariance has a different 

shape from MQ type covariance.    

II) All types of covariances have an impulse-like temporal pattern.  The wave length 

of the impulse is related to vehicle speed vµ  and the lengths of the adjacent beam 

elements.  The larger vµ  the shorter the wave length is, and the longer element length 

the longer wave length.   

III) Examining the spatial behavior of the covariance, a similar shape of covariance 

propagates along the spatial axis, with time delays proportional to the distance 

between two nodes.  Since the covariances are non-zero functions between any pair of 

nodes, the exciting force processes are certainly spatially correlated. 
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IV) Comparing Figure. 6.3.4 with Figure. 6.3.5 (or similarly Figure. 6.3.6 with Figure. 

6.3.7), the line connecting the peaks of the covariance functions, when projected to 

the (s-t)-(xi-x1) plane, has a slope consistent with vµ . It is of interest to examine the 

following two extremes, where when taking the covariance to frequency domain by 

Fourier transform, the spectrum density matrix has constant (frequency independent) 

elements:  

IV.1) The first extreme is when vµ = 0.  One can conjecture that all the impulses shall 

reach their peaks along the line of xi-x1 = 0, leaving other portion of the surface 

essentially zero.  This implies that the excitation processes at various spatial nodes are 

not correlated, to which the conventional excitation model applies.  This extreme 

takes place when a bridge carries two-way traffic and the traffics on both directions 

are exactly symmetric.  

IV.2) The second extreme is when vµ = ∞.  One can similarly conjecture that the 

peaks of the impulses lie along the line of s-t = 0.  This implies that the excitation 

processes at all the spatial nodes are perfectly correlated without time delay. 

From these observations, it is concluded that: (I) The traffic excitation process at a 

spatial point can be assumed to be temporally white due to the temporal impulse-like 

covariance functions, which is asymptotically correct as the average vehicle speed 

increases or the element length is shortened; (II) The spatial correlation is an intrinsic 

nature of traffic excitation, with only an exception when the bridge carries symmetric 

two-way traffic.  This intrinsic nature is not surprising, because same train of vehicles 

traverse different nodes on the beam, so that the excitation load one node experiences 

will be essentially a delayed process of the excitation experienced by a preceding 

node. 
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Figure 6.3.4  1cov[ ( ) ( )]Q Q
iF t F s  for Case 1: γ =2 /s, SP = 1, vµ = 20 m/s, vσ = 5 m/s 

 

 

Figure 6.3.5  1cov[ ( ) ( )]Q Q
iF t F s  for Case 2: γ =2 /s, SP = 1, vµ = 30 m/s, vσ = 5 m/s 
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Figure 6.3.6  1cov[ ( ) ( )]M Q
iF t F s  for Case 1: γ =2 /s, SP = 1, vµ = 20 m/s, vσ = 5 m/s 

 

 

Figure 6.3.7  1cov[ ( ) ( )]M Q
iF t F s  for Case 2: γ =2 /s, SP = 1, vµ = 30 m/s, vσ = 5 m/s 
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6.3.4  Distortion on the Response Spectrum due to Spatially Correlated 

Excitation 

Most of the conventional response-only modal extraction methods (including FDD, 

PP and many other techniques) rely on two stochastic characteristics of the excitation: 

spatial un-correlation and broad-band frequency contents, to obtain reasonable 

estimation of the structural properties when only the structural responses are available.  

The physical significance of these excitation characteristics is that, they render the 

input spectrum )(ωFFS  almost frequency independent, so that within the frequency 

range of interest, the input )(ωFFS  causes neither significant amplitude variation nor 

substantial phase shifting that overlays the structural frequency response.  Otherwise, 

variation of )(ωFFS  can cause )(ωYYS  to differ significantly from the structural 

frequency response functions, depressing a peak at the resonant frequency, or 

distorting the relative vibration amplitudes at various spatial points.  Since it is 

discovered in the previous sections that traffic excitation on a bridge is intrinsically 

spatially correlated, it will be investigated how this spatial correlation distort the 

response spectrum.  

To simplify the consideration and gain insight of the physics of the excitation, 

consider a case where the nodes of the beam elements are equally spaced in the finite 

element model of a bridge.  According to Eq. (6.3), ( , )Q
iW t v  and ( , )Q

jW t v  have 

exactly the same shape (provided that i or j is not the end node of the bridge), and 

( , )Q
jW t v  is the delayed version of ( , )Q

iW t v  with time lag ( ) /j ix x v∆ = − , i.e., 

( , ) ( , )Q Q
j iW t v W t v= − ∆ .  Therefore, by Fourier transform of cov[ ( ), ( )]Q Q

i jF t F s , 

which has an expression similar to Eq. (6.7), one obtains the relation between an off-

diagonal element and a diagonal element in the excitation spectrum density matrix, 

 [ ] [ ]( ) ( )QQ QQ

ij ii
ie ωω ω− ∆=FF FFS S .   (6.9) 
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As has been concluded in the last section, the diagonal element [ ] ( )QQ

ii
ωFFS  can be 

approximated by a constant c, because it is temporally white.  The off-diagonal terms, 

however, contain phase shift ie ω− ∆ , which is frequency dependent.  

A simple analogue to this situation is an n-DOF system subjected to inputs with inter-

channel delays:    

 + + =MY CY KY F&& &      (6.10) 

where the k-th channel of the input vector F, is related to the first channel in 

frequency domain by: 

 ( 1)
1( ) ( )i k

kF e Fωω ω− − ∆=     (6.11) 

This input possesses similar correlation nature as the traffic excitation on a bridge 

does.  By modal decomposition of Eq. (6.10), the response Y in frequency domain is,  

 ( ) ( ) ( )Tω ω ω=Y ΦΛ Φ F     (6.12) 

where diagonal matrix ( )ωΛ  is comprised of elements ( )ii ωΛ , 

2

1( )ii
i i im j c k

ω
ω ω

Λ =
− + +

    (6.13) 

with mi, ci and ki being the modal mass, damping and stiffness of the i-th mode.  The 

i-th channel of response is, by Eq. (6.12),  

1 1
( ) ( ) ( )

n n

i ij jj kj k
j k

Y Fω ϕ ω ϕ ω
= =

= Λ∑ ∑    (6.14) 

In the vicinity of a lightly damped mode, say the j-th mode,  

( ) ( )jj iiω ωΛ >> Λ    (for j ≠ i )   (6.15) 
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Therefore Eq. (6.14) in this vicinity becomes,  

1
( ) ( ) ( )

N

i ij jj kj k
k

Y Fω ϕ ω ϕ ω
=

≈ Λ ∑     (6.16) 

If the excitation is frequency independent, Yi(ω) in the vicinity of the j-th mode has 

the same mode as ( )jj ωΛ  and a magnitude proportional to the j-th mode shape ijϕ .  

However, upon incorporating the frequency dependent input in Eq. (6.11),  

( 1)
1

1
( ) ( ) ( )

N
i k

i ij jj kj
k

Y e Fωω ϕ ω ϕ ω− − ∆

=

≈ Λ ∑    (6.17) 

Let F1(ω) = c and define a function gj(ω),  

( 1)

1
( )

N
i k

j kj
k

g e ωω ϕ − − ∆

=

=∑     (6.18) 

Assuming that the j-th mode takes a sine shape, calculate gj(ω) and graph it together 

with Yi(ω) and ( )jj ωΛ  in Figure. 6.3.8, which illustrates the distortion effect of 

correlated excitation.  The true peak is depressed and a misidentified frequency can 

further leads to error in mode shape reconstruction.  

 

 

Figure 6.3.8 Distortion of the Response Spectrum 
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6.3.5  Video-based Traffic Monitoring and Processing 

It can be seen from the above discussion that, to characterize the traffic excitation, 

traffic information such as the arrival times and the speeds of the vehicles is crucial, 

and should be somehow measured.  Thanks to the prevailing digital image capturing 

and processing technology, traffic can be monitored by camcorders, and vehicle 

arrival times and speeds can be extracted from digital video. 

Figure 6.3.9 shows how such information is extracted from the digital video of a 

pickup truck.  For each vehicle, two frames are selected that show the instants when 

the vehicle first enters and eventually exits the coverage zone of the camcorder.  From 

these two frames, the instantaneous positions of the vehicle and the time stamps of the 

frames are read.  The speed of the vehicle is then deduced assuming that the speed 

remains approximately constant during this interval.  This procedure can be 

automated by image processing based on a moving object identification technique.  

Traffic on a bridge was videotaped for 360 seconds, when a total of 128 vehicles 

passed the site.  For brevity, Table 6.3.1 tabulates the information of the first ten 

vehicles extracted from the video images. 

         

Figure 6.3.9 Captured Video Images of a Vehicle Traveling on the Bridge 
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Table 6.3.1 Traffic Information Extracted from the Video Images 

No. Type 
Arrival Time 

(sec) 

First 

Position (m) 

Second 

Position (m) 

Time Interval 

(sec) 
Speed (m/s) 

1 SUV 4.61 2.44 8.53 0.27 22.58 

2 CAR 6.34 2.13 9.14 0.27 25.96 

3 PICKUP 7.61 8.53 11.43 0.13 22.27 

4 CAR 8.18 4.57 9.14 0.20 22.86 

5 CAR 8.21 8.53 12.19 0.20 18.29 

6 CAR 9.48 9.14 11.89 0.13 21.10 

7 CAR 10.68 8.99 11.28 0.13 17.58 

8 SUV 11.41 3.66 9.14 0.20 27.43 

9 SUV 12.08 9.45 11.58 0.13 16.41 

10 VAN 14.72 3.66 9.14 0.29 18.92 

Note: The vehicle types were classified into five different categories, namely: CAR (passenger cars), 

SUV (sport utility vehicles), VAN, PICKUP, and TRUCK (large cargo trucks). 

One can employ statistical inference to obtain parameters γ , vµ  and vσ  of the traffic 

excitation model based on such data extracted from the traffic video.  Parameter γ  is 

obtained by fitting an exponential distribution to the inter-arrival time between two 

successive vehicle arrivals, listed as the time intervals in Table 6.3.1.  It is found γ = 

2.34 per second (maximum likelihood estimation) for this period.  Figure 6.3.10(a) 

shows the fitness of the distribution function to the histogram of the time intervals.  

Mean and standard deviation of vehicle speeds are also easily obtained from data in 

Table 6.3.1, vµ = 21.45 m/s and vσ =3.26 m/s.  It is found that its distribution is 

approximately normal as shown in Figure. 6.3.10(b).  

 



 106

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Inter-Arrival Time (sec)

F
re

qu
en

cy
 o

f O
cc

ur
re

nc
e

10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

Vehicle Speed (m/s)

O
cc

ur
re

nc
es

 

 (a)      (b) 

Figure 6.3.10 Infer Parameters from Traffic Video Information 

 

The statistics of the vehicle weight SP is hard to estimate from traffic video, and it is 

fluctuating due to the time-variation of traffic condition.  Therefore, it is modeled as a 

modulating intensity SP = A2(t) and will be identified from the bridge response 

amplitude.  

 

6.3.6  Structural Condition Assessment  

To assess the structural condition of a bridge, vertical vibration of its superstructure is 

measured by accelerometers simultaneously while traffic video is taken.  Element 

stiffness is identified from the vibration data in a Bayesian framework, using the 

traffic excitation model developed above as the stochastic description of the system 

input.  
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6.3.6.1 Bayesian Updating 

In Yuen et al. (2002), a structural model identification method has been developed in 

a Bayesian framework, given a stochastic description of the non-stationary excitation.  

In the foregoing sections, such a description of the traffic excitation on bridges has 

been fully developed, as in Eq. (6.3.7).  Therefore, the Bayesian estimation can be 

employed to identify θ.  The Bayesian method will first be summarized and in view of 

the nature of the traffic excitation model, the method is simplified for better 

computational efficiency.  

The Bayesian theorem gives the updated probability distribution of the parameters θ, 

given measured response Y1,N,    

1, 1,( | ) ( ) ( | )N Np c p pθ θ θ= ⋅Y Y     (6.19) 

where c is a normalizing constant.  Ym,p is a vector comprising the zero-mean 

response measurements yk from time m∆t to p∆t, m ≤ k ≤  p, and ∆t is the sampling 

interval: 

,

TT T T
m p m k p⎡ ⎤= ⎣ ⎦Y y y yL L      (6.20) 

 p(θ) is the a priori probability density function (PDF) of θ, which can be assumed 

uniformly distributed lacking knowledge about it.  To efficiently evaluate 1,( | )Np θY , 

an approximation was introduced. 

1, 1, , 1
1

( | ) ( | ) ( | ; )
P P

P

N

N N k k N k
k N

p p pθ θ θ − −
= +

≈ ∏Y Y y Y    (6.21) 

This approximation is in the sense that information of response earlier than Np∆t 

before step k is not very helpful to better estimate yk, or 

formally , 1 1, 1( | ; ) ( | ; )
Pk k N k k kp pθ θ− − −≈y Y y Y . It is suggested in Yuen et al. (2002) that 

Np∆t shall be taken no shorter than the fundamental period of the structure.  
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If the excitation is Gaussian, the response will be Gaussian and the distribution is 

fully described by its mean (assuming zero-mean) and covariance matrix 1: ,1:
Y

N NΣ :  

1,1 1,

1: ,1: 1, 1,

,1 ,

N
Y T

N N N N

N N N

E
⎡ ⎤
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

Γ Γ
Σ Y Y

Γ Γ

L

M O M

L

   (6.22) 

where, each sub-matrix ,
T

m p m pE ⎡ ⎤= ⎣ ⎦Γ y y , is an No-by-No covariance matrix between 

observations at m-th and p-th steps; No is the dimension of the observation vector, or 

the number of sensors.  Given a structural system parameterized by a certain vector θ, 

subjected to traffic excitation with a covariance matrix 1: ,1:
F

N NΣ , whose elements are 

given by Eq. (6.7), its structural response covariance 1: ,1:
Y

N NΣ  can be evaluated in a 

close form, which will be discussed later.   

We now focus on evaluating each term in the right hand side of Eq. (6.21).  The first 

term, 

( ) 1

1, 1, 1: ,1: 1,1/ 2/ 2
1: ,1:

1 1( | ) exp
2(2 )P P P P P

o P

P P

T Y
N N N N NN N Y

N N

p θ
π

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

Y Y Σ Y
Σ

  (6.23) 

The following terms, , 1( | ; )
Pk k N kp θ − −y Y , k = Np+1 to N, are estimated assuming yk can 

be linearly predicted by observations , 1Pk N k− −Y (Yuen et al., 2002): 

( ) 1

, 1 ,( ):( 1) ( ):( 1),( ):( 1) , 1( | ; )
P P P P P

Y Y
k k k N k k k N k k N k k N k k N kE θ

−

− − − − − − − − − −= =y y Y Σ Σ Y   (6.24) 

with covariance matrix:  

( ), , 1( )( ) | ;
P

Y T
k k k k k k k N kE θ − −= − −Σ y y y y Y      

( ) ( )1

, ,( ):( 1) ( ):( 1),( ):( 1) ,( ):( 1)P P P P

TY Y Y
k k k k N k k N k k N k k k N k

−

− − − − − − − −= −Γ Σ Σ Σ   (6.25) 
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where ,( ):( 1) , , 1P P

Y
k k N k k k N k k− − − −⎡ ⎤= ⎣ ⎦Σ Γ ΓL , while ( ):( 1),( ):( 1)P P

Y
k N k k N k− − − −Σ  follows the 

definition in eq. (6.22).  So that,  

( ) 1

, 1 ,1/ 2/ 2
,

1 1( | ; ) exp ( ) ( )
2(2 )P

o

T Y
k k N k k k k k k kN Y

k k

p θ
π

−

− −
⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

y Y y y Σ y y
Σ

 (6.26) 

Note that evaluation of Eq. (6.19) through approximation in Eq. (6.21), or specifically 

by Eqs. (6.23) and (6.26), involves inverting (N-NP+1) covariance matrices of 

dimension NoNP-by-NoNP; while directly evaluating eq. (6.19) through Eq. (6.22) will 

involve inverting an NoN-by-NoN covariance matrix.  When N >>NP, the 

approximation is not only computationally more efficient, but also necessary for a 

computer with limited memory for matrix storage; in the example to be presented, NP 

= 50 while N = 300 for a segment of data of 3 seconds. 

We also note two technical problems involved in this updating procedure and the 

solutions devised in this study.  The first one is the ill-conditioned response 

covariance matrix 1: ,1:
Y

Np NpΣ  due to linearly correlated observations.  When the bridge is 

excited to vibrate only in a few of its dominating lower modes, the sensor readings are 

linearly correlated, proportional to each other according to the mode shapes.  This 

results in a singular covariance 1: ,1:
Y

Np NpΣ , and obviously by Eq. (6.23) leads to an un-

operational updating algorithm.  In this study, principle component analysis (PCA) is 

adopted to condense the responses into a few linearly uncorrelated principle 

components, thus 1: ,1:
Y

Np NpΣ contains only the covariance of these principle components.  

The second problem is associated with PDF updating.  Equations (6.23) and (6.26) 

give the joint PDFs evaluated at the observed data instead of the probability of 

obtaining the data.  To evaluate the probability from the PDF, integration over a high-

dimensional vicinity of the data point must be applied.  When more data are measured, 

in Eq. (6.19), N takes a larger number, and the joint PDF 1,( | )Np θY  is in a higher 

dimensional field, so that not comparable to, say, 1, 1( | )Np θ−Y .  To avoid this difficulty, 
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in this study, the conditional probability is normalized by 1, 1,( | ) ( | )n
N Np pθ θ′ =Y Y  to 

make sure it is not mis-scaled for different Ns.   

Bayesian probability updating as in Eq. (6.19) can be recursively applied when new 

data are available from the monitoring system.  Given a uniformly distributed initial a 

priori p(θ), Eq. (6.19) is employed to obtained the a posteriori 1,( | )Np θ Y , utilizing 

data 1,NY .  Similarly, when a new set of data is available, e.g., 1,2 1N N+ +Y , 1,( | )Np θ Y  is 

adopted as the a priori, and Eq. (6.19) repeated to update the a posteriori, 1,2 1( | )Np θ +Y , 

and so forth.  The probability density of θ is sharpened by updating.  This 

methodology will be verified on an instrumented highway bridge of the testbed in the 

next section.  For the time being, to complete the description of the algorithm, we 

shall discuss a method for the efficient estimation of the response covariance matrix 

in Eq. (6.22). 
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6.3.6.2  Estimation of Response Covariance Matrix 

When the Poisson vehicle arrival is stationary and the speed distribution is not time 

variant, note from Eq. (6.7) that the traffic excitation is a uniformly modulated 

random process, such that   

( ) 2cov[ ( ), ( )] ( ), ( ) ( ) ( )T Ft s E t s A t t sγ= = −F F F F Σ    (6.27) 

This non-stationary process is separable into a time-variant but frequency independent 

modulating function A2(t) and a stationary process with a covariance function 

( )F t s−Σ .  In frequency domain, the stationary process has a spectrum density ( )F
s ωS  

such that 

( ) ( )F F i t
s t e dtωω

∞
−

−∞

= ∫S Σ      (6.28) 

The response covariance of a linear time-invariant system to such a uniformly 

modulated excitation is (Ou and Wang, 1998), 

( , ) ( , ) ( ) ( , )
2

Y F T
st s t s dγ ω ω ω ω

π

∞

−∞

= ∫Σ J S J     (6.29) 

where,  

0
( , ) ( ) ( )

t it t A e dωτω τ τ τ= −∫J Λ      (6.30) 

with Λ(t) being the impulse response of the system; and the superscript T denotes the 

conjugate transpose.   To simplify the calculation, we further assume that the 

modulation function A(t) varies much slower than Λ(t), which is a reasonable 

assumption, considering that it usually takes a vehicle several seconds to traverse a 

bridge,  much longer than the fundamental period of the bridge (usually 0.1 to 0.5 

second).   In view of this assumption,  
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( , ) ( ) ( ) ( ) ( )i i tt A t t e d A t eωτ ωω τ τ ω
∞

−∞
≈ − =∫J Λ H                (6.31) 

where H(ω) is the frequency response of the system.  Now eq. (6.29) is simplified as:   

( )1( , ) ( ) ( ) ( ) ( ) ( )
2

Y F T i t s
st s A t A s e dωγ ω ω ω ω

π

∞
−

−∞

≈ ∫Σ H S H    (6.32) 

The integration with respect to ω is indeed the inverse Fourier transform, which, 

independent to the modulation function, can be performed separately.  In discrete time,    

, , ( , )Y Y Y
m p m p m t p t= = ∆ ∆Σ Γ Σ      (6.33) 

To avoid too many unknowns, the modulation function is assumed to be piece-wise 

constant: A(k) = Ai  for mi ≤ k < pi.   

 

6.3.6.3 Validation on a Test-bed Bridge 

The bridge structural condition assessment procedure based on vibration and traffic 

monitoring, as described above, has been validated on an instrumented bridge from 

the testbed, the JRO.  

Figure 6.3.11 shows an FE model of this bridge.  The columns and the deck girder are 

modeled by beam-column elements.  When the vertical vibration of the deck is of 

interest, it is modeled to be simply supported at both ends on the abutments.  Columns 

are fixed on the ground.  The connections between the column top and the deck are 

considered rigid.  Each node on the deck has 3 DOFs, namely: vertical translation 

along Z axis, in-plane bending (rotation about Y axis), and torsion (rotation about X 

axis).  The nodes on the columns are allowed 4 DOFs, namely: horizontal translations 

(along X and Y axes), in-plane bending (rotation about Y axis) and out-of-plane 

bending (rotation about X axis).  Measured data from the five vertical accelerometers, 
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Channel 4, 6, 13, 14 and 15, as in Figure. 6.3.10, are considered as observation in this 

study, because of the fact that traffic mainly induces vertical vibration of the deck.   

 

Figure 6.3.11 Sensor System and Finite Element Model of JRO 

 

For the purpose of superstructure condition assessment, only the cross-sectional 

stiffness, EI , of the elements of the deck is parameterized with a correction 

coefficient β for identification and probability updating.  The deck has a uniform 

cross-section box-girder in all the 3 spans; a single β is applied to all the deck 

elements.  However, note that the Bayesian updating procedure presented here is not 

limited to identifying only one parameter.  One can parameterized different β’s for 

different elements if the location of structural damage/degradation is also of interest, 

which involves no fundamental change in the algorithm except more demanding 

computation.  As in Deotatis et al. (1992) and Ito et al. (1992), only the probabilities 

associated with a discrete set of parameters are updated.  In this study, the range of β 

is selected from 0.7 to 1.2, and the grid increment is 0.05. 

The computation is in the following steps:  

Step 1: By Eq. (6.7), compute the traffic excitation covariance matrix ( )F tΣ  given the 

geometry of the FE model and the traffic parameters.  The traffic parameters γ , vµ  

and vσ  are obtained based on traffic monitoring and video processing, as previously 
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described.  Vehicle weight statistic E(P2) = SP is set to 1 and its true value is to be 

identified in the next steps.  Figure 6.3.12 plots a few elements in the resulted  ( )F tΣ  

as examples.  Note that ( )F tΣ is the covariance of a stationary multivariate process, 

and s is arbitrary in Figure 6.3.12.  

 

Figure 6.3.12 Elements from Excitation Covariance ( )F tΣ  

Step 2: Given the a priori probability associated with the parameters in the grid, 

(before the first updating, the a priori is set uniform, i.e. 1/11 for all the 11 parameters 

in the grid), find the most likely parameter βml, and assemble the system mass, 

damping and stiffness, the [M, C, K] triple of the FE model parameterized by βml, so 

as to compute the frequency response H(ω) of the system with parameter βml.  Now 

calculate the response covariance matrix by eq. (6.32), with A(t)=A(s)=1, and denote 

the result as 1 ( )Y t s−Σ .  Figure. 6.3.13 depicts an element in 1 ( )Y t s−Σ .  The JRO 

Bridge has a fundamental period of about 0.37 second, so Np∆t=0.5 second is taken 

with sampling interval ∆t=0.01 second. 
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Figure 6.3.13 Element of Predicted Response Covariance 1 ( )Y t s−Σ  

Step 3: The total 360 second acceleration response data measured simultaneously with 

the traffic video are divided into 120 3-second-long segments; N=300 in each of the 

segment for an epoch of updating.  Load the first segment of data and computer the 

covariance matrix of the measured data, denoted as experimental ( )Y
ex t s−Σ , an 

element of which is depicted in Figure. 6.3.14.  

 

Figure 6.3.14 Element of Experimental Response Covariance ( )Y
ex t s−Σ  

If vehicle statistic SP(s) is assumed constant in this 3-second segment, there shall be  

   1 ( ) ( ) ( )Y Y
p ext s S s t sε− + = −Σ Σ      (6.34) 

where, ε is the error residue.  A least-square routine is adopted to estimate SP(s) from 

Eq. (6.34).  So, the vehicle weight P(s) is simply the square root of SP(s).    
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Step 4: For each of the β in the parameter grid, similarly by Eq. (6.32), calculate the 

conditional response covariance: ( , | )Y t s βΣ , with now A(t)A(s) = SP(s).  And further, 

the conditional probability density 1,( | )Np βY by eq. (6.42) through the approximation 

in  Eqs. (6.23) and (6.26).   

Step 5: Combine the results in Step 4 with the a priori parameter probability, 

normalize to obtain the a posteriori by Eq. (6.19).   

Now apply the updating procedure recursively.  In the next epoch of updating, first set 

the a priori equal to the a posteriori resulted in Step 5 in the previous epoch, load the 

next segment of measured data, and repeat Steps 2 to 5.  During this updating 

procedure, the parameter probability distribution evolves from the uniform 

distribution to a distribution with the most probable parameter singled out possessing 

dominating probability.    

The updating result using the first 60 second data (consisting of 20 updating epochs) 

is plotted in Figure. 6.3.15(a).  The identified vehicle weight traversing the bridge at 

each instant is plotted in Figure. 6.3.15(b) companioned with the plot, Figure. 

6.3.15(c), of the accelerometer reading at Channel 4.  One can see that the identified 

vehicle weight is consistent with the vibration amplitude.  We also note that it is 

consistent with the traffic flow captured in the video as well.  The probability of the 

deck stiffness is also updated.  Note that data between 5 to 15 second have low 

amplitude comparable to the measurement noise level, and therefore do not provide 

much information to sharpen the deck stiffness distribution during that period of time.  

Note also that at the time instant slightly later than 20 second,  when a truck traverses 

the bridge arousing bridge vibration with a larger amplitude, the probability of a lower 

stiffness β =0.85 surges, signaling the nonlinear behavior of the bridge structure.  

Overall, after updating using this 60-second record, the probability distribution of 

deck stiffness is gradually sharpened, resulting in that the stiffness correction 
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coefficient of the deck element with maximum probability is β =0.95, while another β 

=0.85 is still with considerable probability. 

Recall that the dynamic vehicle-bridge interaction is not considered in the formulation 

of the stochastic model of traffic excitations; however, when extremely heavy cargo 

trucks pass over, such interaction is significant and can lead to unreliable 

identification results.  Taking advantage of simultaneously estimated vehicle weights, 

vibration data during such events can be excluded from the updating procedure, by 

setting an upper limit on the vehicle weight.  In this study, the limit is set to 80 kN, 

which is estimated based on the specification of a fully loaded large pick-up with a 

fully loaded trailer (e.g., 

http://www.automotive.com/2005/12/chevrolet/silverado/specifications/).  Vehicles 

heavier than that are mostly heavy cargo trucks with a different suspension device that 

have low fundamental frequencies and interact considerably with the bridge.   

To visualize the results of this Bayesian updating procedure, Figure.6.3.16 (a) and (b) 

graph the evolution of the probability distribution over the entire 360-second period 

and the simultaneously identified vehicle weight history, respectively.  Figure 6.3.17 

graphs the resulted distribution of β at several selected instants to reveal the effect of 

Bayesian updating.  It is illustrated that in this updating procedure, using the 

information obtained by vibration sensors and also that from traffic video, the deck 

sectional stiffness is pin-pointed to 95% of the EI value calculated from design 

drawings, with a probability of 92.2%, which indicates that the superstructure of the 

JRO possesses a stiffness close to its design value and therefore is in its normal 

integrity condition. 
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6.3.7  Summary  

A stochastic model of traffic excitation on bridges is developed assuming that 

vehicles traversing a bridge arrive in accordance with a Poisson process, and that the 

contact force of a vehicle on the bridge deck can be converted to equivalent dynamic 

loads at the nodes of the beam elements.  Random vehicle arrivals, speeds and 

weights are considered.  The traffic excitation process is formulated as a filter Poisson 

process with a generalized definition.  The Campbell’s theorem is extended to apply 

to random process of this type.  The covariance model of traffic excitations on bridges 

is derived and found conforming to a uniformly modulated non-stationary process.  

The model reveals that traffic excitation on a bridge is intrinsically spatially correlated 

in most cases, with only one exception where a bridge carries symmetric two-way 

traffic.  This study demonstrates that the parameters in this model, such as the Poisson 

arrival rate and the stochastic distribution of vehicle speeds, can be obtained by 

processing the traffic video images and adopting simple statistical inference 

techniques.  Partial traffic information expressed by this stochastic model is 

incorporated in a Bayesian framework to evaluate the structural properties and update 

their uncertainty for condition assessment of the bridge superstructure.  It is validated 

on a monitored real-life highway bridge that the information collected, both by bridge 

vibration measurement and video-based traffic monitoring, sharpens the probability 

distribution of the structural element stiffness, pin-points the element properties that 

serve as the indicators of structural integrity.  The vehicle weights are also estimated 

simultaneously in this procedure.     
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Figure 6.3.15 Results Using 0-60 Second Data  
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Figure 6.3.16 Results Using Entire 0-360 Second Data  

 

 

 

Figure 6.3.17 Distribution of β at Selected Instants 
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6.4 Sub-Structure Condition Assessment 

6.4.1 Frequency Domain Identification 

In this section the two system identification methods used in this chapter are outlined. 

They are model-based parametric methods that utilize global optimization to identify 

the model parameters that reconcile the predicted and measured vibration 

characteristics. The system model is assumed LTI, and the identification method is 

relatively easy to implement by optimization routines. 

 

6.4.1.1 Least Squares Estimation for Modal Parameters 

Model parameterization: sectional stiffness reduction coefficients 

Actual sectional stiffness is represented by a set of correction coefficients, βi’s , being 

a fraction of the sectional stiffness calculated from drawings.  To be specific, 

( )
( )

i
A

i i
D

k
k

β = ,       (6.35)  

where ( )i
Ak  is the actual (subscript A) sectional stiffness of Element i (superscript i), 

and ( )i
Dk  is the sectional stiffness of the same element calculated from drawings 

(subscript D).  Sectional stiffness k can be either EI for bending stiffness or EA for 

axial stiffness of an element, depending on the applications.   

Rayleigh type damping was assumed in this study for all the models.  A Rayleigh 

damping matrix C is a linear combination of the mass and stiffness matrices M and K, 

by 

C aM bK= + .      (6.36) 
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Two correction coefficients, iα ( i = 1, 2 ), quantifying the damping characteristics of 

the specimens are defined as 

1
( )
( )

A

D

a
a

α =  and 2
( )
( )

A

D

b
b

α = ,                  (6.37) 

where ( )Aa  is the actual (subscript A) Rayleigh coefficient a, and ( )Da  is the Rayleigh 

coefficient a assumed for design purpose (subscript D);  while  ( )Ab  is the actual 

(subscript A) Rayleigh coefficient b and ( )Db  is that for design purpose (subscript D).  

( )Da  and ( )Db  are obtained by assigning a 5% damping for both the first and the 

second modes for the finite element model derived from design drawings.  

With a finite element model of the specimen parameterized by βi’s and αi’s, 

collectively denoted as  

θ ={β1, ···, βn, α1, α2}T ,    (6.38) 

the analytical natural frequencies, mode shapes, and modal damping ratios are all 

readily obtained by eigen analysis.   

A weighted-nonlinear-least-square procedure was used to identify iα ’s and βi’s (i.e., θ) 

for the specimen in the first experiment, based on the modal characteristics.  The 

following object function is employed:   

2 2
1 2( ) (1000 ) (500 )Obj f fθ = ⋅∆ + ⋅∆         

2 2 2 2
1 2 1 2(10 ) ( ) (10 ) ( )MAC MAC ζ ζ+ ⋅ + + ⋅∆ + ∆                   (6.39) 
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where, ( )M
i i

i M
i

f ff
f

θ−
∆ = , ( i =1, 2); 

2[( ) ]
[( ) ( )][( ) ]

M T A
i i

i M T M A T A
i i i i

MAC φ φ
φ φ φ φ

⋅
=

⋅ ⋅
, ( i =1, 2;  and 

( )A
i iφ φ θ= );  and     ( )M

i i
i M

i

ζ ζ θζ
ζ
−

∆ = , ( i =1, 2).    

M
if , M

iφ  and M
iζ  are natural frequency, mode shape and damping ratio of the i-th 

mode extracted from vibration measurements, respectively; ( )if θ , ( )iφ θ  and ( )iζ θ  

are the analytical frequency, mode shape and damping ratio of the i-th mode 

associated with a correction coefficient set θ .  MAC values so defined are indicators 

of the similarity between two shapes.  And different weight, such as 1000, 500, 10 

and 1, are adopted to emphasize the relative significance among the vibration 

characteristics and the various confidence levels when they are obtained from the 

measured data.  Parameters in θ, 1 2 1 2( , , , )β β α α , are each confined to a lower bound 

0.001 and an upper bound 4, based on a priori knowledge of the structural system.  To 

solve the weighted-nonlinear-least-square problems, a minimization with linear 

constrains by quasi-Newton method (Polak, 1997) is employed.   

 

6.4.1.2 Neural Network Based Identification 

The neural network technique (e.g., Feng and Bahng 1999; Masri et al. 2000; Yun et 

al. 2001) can be used to obtain the elemental stiffness values based on the measured 

dynamic characteristics of a structure. The neural network-based system identification 

method has several advantages compared with conventional system identification 

methods. The neural network approach is more capable of obtaining elemental 

stiffness values based on the partially and incompletely measured components of the 

mode shapes due to the limited sensor number, and on only a few lower modes 

extractable from the vibration signals. Furthermore, it is very convenient to use the 

neural network to parameterize any properties of the structures, such as the effective 

shear area, as the unknowns to be identified. In contrast to many system identification 
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methods in which the sensitivity matrix may become unstable especially for complex 

structural systems, the neural network approach does not require calculation of the 

sensitivity matrix, and thus can be applied to the complex civil engineering structures 

avoiding the numerical difficulty. 

As shown in Figure. 6.4.1, the neural network consists of an input layer, hidden layers, 

and an output layer. The relationship between input and output of a neural network 

can be nonlinear or linear, and its characteristics are determined by the weights 

assigned to the connections between the neurons in two adjacent layers. Changing 

these weights will change the input/output relationship of the network. A systematic 

way of determining the weights of the network to achieve a desired input/output 

relationship is referred to as a training or learning algorithm. The standard back 

propagation algorithm and radial basis networks were used in this study, for training 

the neural network to identify structural parameters (the stiffness and the mass 

matrices of the bridge, and the spring stiffness at the abutments) from measured 

natural frequencies and mode shapes. The procedure of the neural network-based 

identification involves the following steps: (1) determining the types of input and 

output patterns; (2) preparing the training and testing patterns through FE analyses; 

(3) training the neural network using the back propagation algorithm; and finally (4) 

estimating the structural parameters of the baseline FE model by inputting the 

measured natural frequencies and mode shapes to the well trained neural network. 

In the present study, the input pattern consists of the natural frequencies and the mode 

shapes. The output pattern consists of correction coefficients of structural parameters 

Training input–output data sets were obtained by extensive FE analyses with different 

sets of correction coefficients. 
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Figure 6.4.1 Architecture of the Neural Network 

 

6.4.2 Time Domain Identification 

In this chapter two time domain based system identification methods are discussed. 

The first one is least squares estimation for structural parameters in an off-line 

fashion. The second one is extended Kalman filter based identification which is an on-

line methodology. 

 

6.4.2.1 Least Squares Estimation for Structural Parameters 

Least squares estimation for structural parameters to predict the response time-

histories and compare to the measured signals, so as to avoid possible errors when 

extracting the modal characteristics (frequencies, mode shapes and damping) from 

vibration data.   
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A similar weighted-nonlinear-least-square procedure like in section 6.4.1.1 was used 

to identify iα ’s and βi’s (i.e., θ).  The object function is:  

( ) ( ) ( )Obj θ = ∆ ∆TZ W Z     (6.40) 

where, ( )M θ∆ = −Z Z Z .  MZ is a matrix containing the measured time histories of 

the acceleration responses at the sensor locations, arranged in such a way that its 

columns are associated with different channels and rows are associated with 

increasing time.  ( )θZ  is a matrix of predicted acceleration responses using the 

MIMO state-space model parameterized by θ, arranged in the same manner as MZ .  

W is the inverse matrix of the covariance of the noises in different channels, so that 

the channels with lower noise level are trusted more than those with higher noise level.  

The identification of sectional stiffness reduction is now optimizing θ to get a 

minimum of the object function.   Parameters in θ, 1 2 3 1 2( , , , , )β β β α α , are each 

confined to a lower bound 0.001 and an upper bound 4, based on a priori knowledge 

of the structural system.  To reduce the risk of converging to a local minimum, 500 to 

1000 times of random searches are performed to get a globally plausible initial set of 

θ0.  In each of the random search, 0
iβ ’s and 0

iα ’s are randomly picked from uniform 

distributions between their lower and upper bounds.  The smallest ( )Obj ⋅  is registered 

and the associated combination of 0 0 0 0 0
1 2 3 1 2( , , , , )β β β α α  is adopted as the initial values 

for quasi-Newton optimization.  The quasi-Newton optimization further refines the 

parameters, and obtains the parameters that best reconcile the predicted and measured 

responses.   

6.3.2.2 Extended Kalman Filter Based Identification 

This study applies the the extended Kalman filter (EKF) approach to identify different 

levels of damage on a large-scale three-bent bridge model caused by earthquake 

motions, by defining the damage as structural stiffness degradations. Stiffness values 
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at the lower and upper portions of each column were selected as unknown physical 

parameters. The stiffness values were identified even when the structure entered a 

nonlinear range. Also the change in their values caused by seismic damage was 

identified on-line.  

 

Proposed Damage Detection Method and EKF Formulation  

The well-known EKF equations can be summarized, together with the proposed 

damage detection method, as follows. 

 

A second order equation of motion for a multi degree of freedom system can be 

written  

 

                              guIMtutKtutCtuM &&&&& ..)().()().()(. −=++                                   (6.41) 

where M is mass matrix, C(t) is time varying damping matrix, K(t) is time varying 

stiffness matrix, u is the relative displacement vector, I is the influence vector and 

gu&& is the input ground acceleration. guu &&&& + and gu&&  are measured, M is calculated from 

design drawings, C is considered to be of Rayleigh type damping, i.e. linear 

combination of K and M matrices. The objective is to identify K(t) which can be 

directly used as damage indicator.  

 

An extended state vector can be defined as: [ ]Tttututx )(),(),()( Ψ= &                      (6.42)                              

;where )(tΨ  is the extended state which can be assigned as any physical value such 

as stiffness, damping or hysteretic parameters. 

The EKF determines the optimal estimate of the state kkx |ˆ that minimizes the trace of 

the error covariance 

                                              ( )( )[ ]T
kkkkkkkk xxxxEP ||| ˆˆ −−=                                     (6.43) 

;where ^ denotes estimation. 
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There are mainly two conceptual phases in EKF namely prediction and correction 

phases. In prediction phase, state estimate 1|1ˆ −− kkx and the error covariance Pk-1|k-1 are 

projected ahead in time resulting in a priori estimates of 1|ˆ −kkx and Pk|k-1. In the 

correction phase these a priori estimates are filtered using the information from the 

new measurements resulting in a posteriori estimate kkx |ˆ and Pk|k. 

 

The system can be defined as: 

                                                       )(),()( twtxftx +=&                                          (6.44) 

;where w(t) is process noise. 

                                                        )(),()( tvtxhty +=                                           (6.45) 

;where y(t) is the measurement and v(t) is the measurement noise. 

 

The system is supposed to meet the conditions below: 

                                                              [ ] 0)( =twE                                                 (6.46) 

                                                                [ ] 0=kvE                                                  (6.47) 

                                                            [ ] 0)( =T
kvtwE                                               (6.48) 

;where subscript k indicates discrete time. 

 

Then the values: Q, R, x0, P0 can be defined as: 

                                                      [ ] )()()( tQtwtwE c
T =                                          (6.49) 

                                                           [ ] jkk
T
kj RvvE δ=                                             (6.50) 

                                                            [ ] 00 )( xtxE =                                                 (6.51) 

                                                ( )( )[ ] 00000 )()( PxtxxtxE T =−−                                (6.52) 

;where subscript c indicates continuous time and j indicates discrete time. 

Linearized Measurement Matrix Hk (for steps 3, 4 & 5 below) can be obtained as: 

                                                         
x

txhtxH
∂

∂
=

),(),(                                            (6.53) 
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                                                          ),ˆ( 1| kkkk txHH −=                                           (6.54) 

Linearized State Matrix Fk (for calculating State Transition Matrix) can be obtained 

as: 

                                                         
x

txftxF
∂

∂
=

),(),(                                            (6.55) 

                                                          ),ˆ( 1| kkkk txFF −=                                             (6.56) 

 

 

State Transition Matrix Фk-1 can be obtained as  (for step 1): 

                                              ∫
−

−−− Φ+=Φ
k

k

t

t
kktk dttttxFI

1

),(),ˆ( 11|1                              (6.57) 

The last equation can be written as: 

                              ),[ttFConstant               ).exp(),( 1-k11 kkkk tFttt ∈∀∆=Φ −−          (6.58) 

This can be approximated as: 

                                                    11 .),( −− ∆+=Φ kkk FtItt                                         (6.59) 

Also process noise can be discretized as: 

                                                        )(. 11 −− ∆= kck tQtQ                                             (6.60) 

After initializing Q, R, x0, P0, five steps of Kalman Filtering can be performed as 

follows: 

Kalman Filter Equations: 

 

Step 1: Predicted Covariance:  

                                               111|111| −−−−−− +ΦΦ= k
T
kkkkkk QPP                                     (6.61) 

Step 2: Predicted State: 

                                                        1|111| ˆˆ −−−− Φ= kkkkk xx                                             (6.62) 

Step 3: Kalman Gain: 

                                             1
1|1| )( −
−− += k

T
kkkk

T
kkkk RHPHHPG                               (6.63) 
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Step 4: Corrected Covariance: 

                                                     1|| )( −−= kkkkkk PHGIP                                         (6.64) 

Step 5: Corrected State: 

                                               ]ˆ[ˆˆ 1|1|| −− −+= kkkkkkkkk xHyGxx                                  (6.65) 

So the state vector x is obtained at each time step. As described in (2) state vector 

contains information of not only displacement and velocity but also of stiffness value. 

This means that stiffness value is identified for each time step. 

 

Some observations can be made on the Kalman gain: Gk in (6.63): 

 

As the measurement error covariance Rk approaches zero, the gain Gk weights the 

residual (difference between the measurement and estimation) more heavily: 

 

                                                           1

0
lim −

→
= HGkRk

                                               (6.66) 

On the other hand as the a priori estimate error covariance 1| −kkP  approaches to zero, 

the gain Gk weights the residual less heavily: 

 

                                                             0lim
01|

=
→−

kP
G

kk

                                               (6.67) 

As the measurement error covariance Rk approaches zero, actual measurement is 

trusted more. On the other hand, as a priori estimate error covariance 1| −kkP  

approaches zero, the predicted measurement is trusted more.  
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Chapter 7 
 

EXPERIMENTAL VERIFICATION 
OF METHODOLOGIES 

 

This chapter documents the experimental verification of the methodologies developed 

in this research for interpreting the vibration sensor data into the bridge structural 

integrity.  Large-scale shaking table tests were carried out on two realistic bridges 

models by progressively damaging the models.  The structural damage of different 

extents was then identified based on the structural vibrations measured on the models.   

  

7.1. Large Scale Shake Table Test Verification 

The experimental setup, test procedures and damage observed in the two experiments 

conducted at University of Nevada, Reno (UNR) are described in this section.  The 

data analysis and damage identification will be presented in the next section.  

7.1.1. Two Column Bent Test (Experiment 1) 

Experiment 1 was performed on a flared 2-column reinforced concrete bent specimen 

(Figures 7.1.1 and 7.1.2).  As sketched in Figure. 7.1.3, two compensative masses 

were added to simulate the mass of the superstructure;  one weighs 60 kips composed 

of lead placed on the bent beam, and another 40 kips composed of the concrete block 
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set aside but linked to the beam by a steel rod.   Acceleration signals from the five 

sensors, whose locations are shown in Figure. 7.1.3, were recorded. 

 

Figure 7.1.1 Layout of the Specimen in Experiment 1 
(This drawing is provided by Prof. Sanders at UNR) 

 

Figure 7.1.2 Reinforcement Details of the Specimen in Experiment 1 
(This drawing is provided by Prof. Sanders at UNR) 
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Figure 7.1.3 Schematic Plot of Experiment 1  

The ground motion record at the Sylmar station in the 1994 Northridge Earthquake 

was used as the driving signal of the shaking table to simulation strong motion.  Its 

amplitude was scaled with different scaling factors, namely 0.15, 0.25, 0.50, 0.75, 

1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 2.75, sequentially, in different tests to progressively 

introduce different levels of damage.  Before and after each of the strong motions, an 

ambient input measured at a real bridge, amplified by 50 times just to overcome the 

friction of the shaking table, drove the shaking table to perturb the bent specimen in 

the corresponding damage level.  In between, four small amplitude free vibrations 

were also performed to provide another mechanism for identifying the system 

characteristics at different damage levels.  

During the test, after each level of the strong motions, cracks were marked and photos 

were taken to document the damage.  Figure 7.1.4 shows the damage observed in the 

flared portion of the columns.  As the damage accumulated, more and more cracks 

were observed.  However, by looking only at the crack distribution, it is hard to 

quantify the damage.  It is also hard to correlate the crack patterns with the strength or 

deformation reservation the bent still has before the onset of a catastrophic collapse.   
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Figure 7.1.4 Damage at Flared Portion of Columns 

 

7.1.2. Full Bridge Test (Experiment 2) 

Experiment 2 was performed on a 2-span 3-bent reinforced concrete bridge specimen 

(Figures 7.1.5 to 7.1.7).  As shown in Figure. 7.1.8, each of the three bents is 

supported individually on a shaking table.  The bents are linked by the bridge deck, 

which consists of three post-tensioned beams.  Each of the bents has two columns, 

having the same design cross sections.  But the bents are of different heights (72 in, 

96 in and 60 in for Bents 1, 2 and 3, respectively), so that they process significantly 

different transverse stiffness.  To resemble the inertia of other parts of the 

superstructure not built into this specimen, two compensative masses were added.  

The shaking tables were driven by input acceleration signals in the transverse 

direction of the bridge.  Eleven accelerometers were installed on the specimen to 

obtain the acceleration inputs and responses of the bridge, as illustrated in Figure. 

7.1.9. Note that the deck is divided into two simply supported spans in the vertical 
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bending direction.  However, in the transverse direction, the existence of the post-

tension tendons and the pre-stressed strain warrant a continuous bending moment 

transmission. 

 

Figure 7.1.5 Design of the Bridge Specimen in Experiment 2 
(This drawing is provided by Prof. Saiidi at UNR) 

 

Figure 7.1.6 Design of the Post-tension Ducts in Experiment 2 
(This drawing is provided by Prof. Saiidi at UNR) 
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Figure 7.1.7 Design of the Three Bents in Experiment 2 
(This drawing is provided by Prof. Saiidi at UNR) 
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Figure 7.1.8 Illustration of Experiment 2 

 

During the tests, various earthquake ground motions tailored to various soil-

foundation scenarios were used as the driving signals of the shaking tables to 

simulation strong motions.  By their demands to the bridge structure, ground motions 

were classified into different levels, such as low, moderate, high, severe and extreme 

levels.  After the most strong ground motion, a smaller motion was input to mimic an 

aftershock earthquake.  In Table 7.1.1, the sequence of the tests (denoted in Table 

7.1.1 by ‘T-#’) and their input peak ground accelerations (PGA) are listed.  Different 

levels of damage were introduced to the bridge specimen by these strong motions.  In 

between of the strong motions, low amplitude white noise (PGA is approximately 

0.05g) drove the shaking tables to perturb the specimen in the corresponding damage 

level (denoted by ‘WN-X-#’ or ‘WN-Y-#’ in Table 7.1.1, where ‘X’ denotes the 

excitations along the transverse direction of the bridge, and ‘Y’ denotes those in the 

longitudinal direction).  Free vibrations were also aroused by inputting a snap wave 

(denoted by ‘S-#’ in the table).  
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Figure 7.1.9 Schematic Plot of the Sensor Layout in Experiment 2 

 

Table 7.1.1 Test Procedure 

Tests Ground Motion Description PGA (g) Damage Description 
S-1 Snap (Arouse Free Vibration).   

WN-X-1 White Noise in Transverse.   
WN-Y-1 White Noise in Longitudinal.   

T-12 Low Earthquake in Transverse. 0.0851  
T-13 Low Earthquake in Transverse. 0.1729 Bent 1 yields.  
T-14 Moderate Earthquake in Transverse. 0.3193 Bent 3 yields. 
S-2 Snap (Arouse Free Vibration).   

WN-X-2 White Noise in Transverse.   
WN-Y-2 White Noise in Longitudinal.   

T-15 High Earthquake in Transverse. 0.6272 Bent 2 yields. 
T-16 Severe Earthquake in Transverse. n.a.  
T-17 Extreme Earthquake in Transverse. 1.135  
S-3 Snap (Arouse Free Vibration).   

WN-X-3 White Noise in Transverse.   
WN-Y-3 White Noise in Longitudinal.   

T-18 Extreme Earthquake in Transverse. 1.3975  
T-19 Extreme Earthquake in Transverse. 1.7033 Bent 3 steel buckles. 
S-4 Snap (Arouse Free Vibration).   

WN-X-4 White Noise in Transverse.   
WN-Y-4 White Noise in Longitudinal.   

T-20 After Shot in Transverse. 1.2861  
S-5 Snap (Arouse Free Vibration).   

WN-X-5 White Noise in Transverse.   
WN-Y-5 White Noise in Longitudinal.   

 

Figure 7.1.10 shows the crack propagation at the lower portion of a column of Bent 1.  

As the damage accumulated, more and more cracks were observed, and finally 

concrete spallings were seen at the bottom of the column.  

It is observed that cracks are not clear indication of the formation of a plastic hinge.  

In this experiment, advantages were taken of the densely instrumented strain gauges 

on the steel rebars embedded before concrete casting to read the deformation of the 
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steels, based on which yielding of the bents was found.  As indicated in Table 7.1.1, 

the damage procedure observed can be outlined as: Bent 1 yields  Bent 3 yields  

Bent 2 yields  Bent 3 steel buckles.  This procedure is largely determined by the 

relative heights of the bents.  The onset of Bent 1 yielding is due to the fact that the 

first mode of this bridge specimen (at its undamaged stage) has the largest 

displacement demand on Bent 1.  After the yielding of Bent 1, Bent 3 attracts most the 

seismic force and yields, and then so happens to Bent 2 after the yielding of Bents 1 

and 3.  The final collapse (in the test, the specimen was protected to avoid actual 

collapse) is associated with the steel buckling at Bent 3, which has the smallest 

ductility capacity among the three.  

 

Figure 7.1.10 Damage Observed at a Column of Bent 1 

 

To further confirm the observed damage strain measurements were analyzed. The 

strain sensors were embedded in the rebars at the locations shown in Figure 7.1.11.  In 

the same figure, strain time history measured during Test-14 at Bent-3 is shown.  If 

the average yielding value of steel, 002.0=yε , is taken as a guide; it can be seen that 

around 4 sec yielding occurs after which the vibration continues around a shifted axis. 
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Figure.7.1.11 Strain Measurements at Bent-3 During Test 14 
 

On an existing bridges, however, such strain gauge embedment is hardly possible.  

Therefore, the objective of this research is to identify such seismic damage using the 

acceleration measurement, rather than strain measurement.  Compared with strain 

gauges, accelerometers can be much more easily installed on existing structures.  

 
7.2. Damage Identification Based on Low-Level 
Excitation 
 
The damage detection methods/algorithms developed in Chapter 6 were tested, in 

which the sectional stiffness reduction, an indicator of damage, is identified based on 

acceleration measurement.   Compared to strain sensors, accelerometers are much 

easier to install on an existing structure.  Therefore, identification of damage based 

only on acceleration measurement is highly desirable. 

 

 

Left of column

Right of column

Bent-3 Elevation View 
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7.2.1. Frequency Domain Identification 
 

The ambient perturbations at the base of the bent were scaled from a record on an 

instrumented highway bridge, the JRO.  It has dominating energy in the range 

between 5 to 10Hz.  The specimen varied its responses to this ambient input at 

different damage stages, as shown by a portion of the response time-histories depicted 

in Figure. 7.2.1.  The specimen behaved linearly before damage occurred (after 15% 

and 25% Sylmar motions), while the amplitudes and the frequencies were reducing as 

damage occurred and accumulated.  

 

Figure 7.2.1 Measured Acceleration Responses at Ch-5 to Ambient Excitations 

Natural frequencies, mode shapes (Table 7.2.3, marked as measured) and damping 

ratios (Table 7.2.1) for the first two modes are obtained based on the measured 
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ambient vibration by peak-picking the power spectrum curves (Figure. 7.2.2) and the 

conventional half-power method.  Note that the identification of damping 

characteristics is not reliable, because viscous damping can not fully represent the 

nature of hysteretic behaviors.    

 

Figure 7.2.2 Peak-Picking of Power Spectrum Density Functions 

 

Table 7.2.1 Damping Ratios ζ  

 After   15% 
Sylmar 

After   25% 
Sylmar  

After   50% 
Sylmar  

After 100% 
Sylmar  

After 200% 
Sylmar  

After 275% 
Sylmar  

Mode 1 1.77%     3.43%     2.10%     9.30%     3.29%      2.05%     
Mode 2 2.12% 1.15% 1.34% 1.92% 10.43% 15.3% 
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Figure 7.2.3 Free Vibration II (after 100% Sylmar) and Its Time-frequency Plot 

 

Figure 7.2.3 shows the time-frequency plots by short-time Fourier transform of the 

free vibration response at Ch-5 after 100% Sylmar motion.  It illustrates, to some 

extent, the intrinsic difficulty of time-frequency analysis which intents to trace the 

structure changes at every instance, i.e., either the frequency resolution or the time 

resolution have to be compromised.   

 

7.2.2. Time Domain Identification 

7.2.2.1. Experiment 1 

Using Least Squares Estimation in Frequency Domain outlined previously, the 

stiffness correction coefficients for the column bending stiffness and the Rayleigh 

damping coefficients at each damage stage are obtained as in Table 7.2.2.   

Table 7.2.2 Identified Correction Coefficients 
 

 After   15% 
Sylmar 

After   25% 
Sylmar  

After   50% 
Sylmar  

After 100% 
Sylmar  

After 200% 
Sylmar  

After 275% 
Sylmar  

1β  0.9120 0.8651 0.7600 0.5096 0.1035 0.0710 

1α  0.2632 0.9249 0.4874 2.1275 0.1004 0.0027 

2α  0.5561 0.0100 0.1569 0.0001 3.8730 3.8413 
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Note that the sectional stiffness drops dramatically as damage accumulated, as 

indicated by 1β  decreasing from 0.91 all the way to 0.07.  Therefore, 1β  is a sufficient 

quantitative indicator of the bent specimen’s structural condition and can be plausibly 

postulated as the secant sectional stiffness at the associated damage stage normalized 

by the initial sectional stiffness.  Table 7.2.3 compares the empirical and analytical 

modal characteristics using the corrected model.  

Table 7.2.3 Comparison of the Modal Characteristics 

After 15% Sylmar After 25% Sylmar After 50% Sylmar  Measured Analytical Measured Analytical Measured Analytical 

1f (Hz) 4.25 4.11 4.15 4.0329 3.88 3.82 

2f (Hz) 7.59 8.46 7.54 8.2981 7.47 7.86 
-0.5000 -0.0163 -0.5214  -0.0166    -0.5523     -0.0170    
-0.3587 -0.0167 -0.3633 -0.0170 -0.3372 -0.0175 
-0.4919 -0.0269 -0.4794 -0.0274 -0.4621 -0.0282 1φ  

-0.6152 -0.0331 -0.6024 -0.0337 -0.6010 -0.0345 
-0.5722 0.0339 -0.5738 0.0337 -0.5625 0.0336     
-0.3371 0.0356 -0.3389 0.0355 -0.3402 0.0353 
-0.4521 0.0573 -0.4510 0.0571 -0.4537 0.0568 2φ  

-0.5952 0.0699 -0.5924 0.0696 -0.6016 0.0692 

1ζ (%) 1.77 1.77 3.43 3.40 2.10 2.10    

2ζ (%) 2.12 2.15 1.15 1.68 1.34 1.36 
After 100% Sylmar After 200% Sylmar After 275% Sylmar  Measured Analytical Measured Analytical Measured Analytical 

1f (Hz) 3.47    3.47 1.76 1.76    1.46 1.47    

2f (Hz) 7.57 7.57 7.50 7.52 7.42 7.42 
-0.5649    -0.0220    -0.4063    -0.0288    -0.4060     0.0292     
-0.3443 -0.0228 -0.3715 -0.0301 -0.3882 0.0304 
-0.4642 -0.0366 -0.5526 -0.0482 -0.5320 0.0488 1φ  

-0.5885 -0.0447 -0.6253 -0.0584 -0.6286 0.0591 
-0.5616 -0.0307   -0.3892 -0.0248    -0.3860 0.0245    
-0.3380 -0.0324 -0.3779 -0.0265 -0.3767 0.0261 
-0.4493 -0.0521 -0.5042 -0.0423 -0.4961 0.0417 2φ  

-0.5918 -0.0631 -0.6709 -0.0507 -0.6804 0.0498 

1ζ (%) 9.30 9.07 3.29 3.29     2.05 2.05   

2ζ (%) 1.92 4.15 10.43 10.66 15.30 10.24 

 

To further verify the identified results, a finite element model with proper corrections 

made according to the identified 1 1 2( , , )β α α  is used to simulate the bent response to 

ground motions in time domain (Figure. 7.2.4).   
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Figure 7.2.4 Simulated and Measured Responses for 15% Sylmar Motion 

 

7.2.2.2. Experiment 2 

To lessen the effect of noise, signals were band-pass filtered in frequency range from 

1 to 15 Hz.  Figure 7.2.5 shows the filtered acceleration at Ch-4 during low-amplitude 

transverse white noise tests.  
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Figure 7.2.5 Acceleration Responses at Ch-4 to White Noise Disturbances at  
Various Damage Stages 

 

Following the Least Squares Estimation Time Domain outlined above, the correction 

coefficients were identified at different damage stages using the acceleration 

measurements obtained in the low amplitude white noise tests.  The results are listed 

in Table 7.2.4.  Note that the identified sectional stiffness coefficients clearly indicate 

the same damage procedure as observed in the experiment.  Bent 1 yields  Bent 3 
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yields  Bent 2 yields  Bent 3 steel buckles.  Between WN-X-1 and WN-X-2, 1β  

and 3β  drop from 0.78 to 0.53 and from 0.85 to 0.61 respectively, while 2β  remains 

same level, indicating in a quantitative manner the yielding of Bent 1 and Bent 3 

between these two tests.  Then between WN-X-2 and WN-X-3, the decrements in all 

1β , 2β  and 3β  signal that not only Bent 2 yielded, but also the damage in Bent 1 and 

Bent 3 further developed.  In WN-X-4, 3β  touches down to a very low value, 0.11, 

associating with the severe damage in Bent 3 (steel buckling).  And the results of 

WN-X-5 are comparable to those in WN-X-4, which is consistent with the 

observation that the after-shot earthquake actually had not further destroyed the 

bridge specimen significantly.     

Therefore, iβ  is a sufficient quantitative indicator of the bridge specimen’s structural 

condition.  Based on the previous discussion on post-event low amplitude hysteresis,  

iβ  can be plausibly postulated as the secant sectional stiffness at the associated 

damage stage normalized by the initial sectional stiffness.  If a push-over analysis is 

performed and a capacity curve of the specimen is obtained,  iβ  can further be 

correlated to the deformation capacity reservation the specimen/element still has at 

this damage stage.     

Table 7.2.4 Identified Correction Coefficients 

Tests 1β  2β  3β  1α  2α  

WN-X-1 0.78 0.79 0.85 1.02 2.05 
WN-X-2 0.53 0.80 0.61 0.33 6.24 
WN-X-3 0.19 0.31 0.18 0.82 3.52 
WN-X-4 0.20 0.16 0.11 2.12 1.28 
WN-X-5 0.17 0.13 0.13 0.85 4.21 
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To further verify the identified results, a MIMO model with proper corrections made 

according to the identified 1 2 3 1 2( , , , , )β β β α α  were used to simulate the specimen 

responses to WN-X-2 and WN-X-5 ground motions in time domain.   They capture 

the primary characteristics of the bridge specimen response, as evident in the time-

history simulation results shown in Figures. 7.2.6 and 7.2.7.   

 

Figure 7.2.6 Simulated and Measured Ch-4 Responses for WN-X-2 Motion 
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Figure 7.2.7 Simulated and Measured Ch-4 Responses for WN-X-5 Motion 
 

 

7.3. Damage Identification Based on Earthquake 
Excitations 
 
In this section, firstly identification of modal parameters of the bridge model from 

white noise inputs is presented. Because the level of shaking is low, classical 

frequency domain based approaches can be used. Afterwards structural stiffness 

values at selected locations are determined using EKF. Lastly, comparison of the 

results is presented. 

 
 
7.3.1. Frequency Domain Identification 
 
7.3.1.1. Frequency Domain Identification Using White Noise Input 
 
 
Because of its level of shaking the white noise input will cause no further damage to 

structure.  So the Fourier Transform can be used to obtain the modal frequencies of 

the bridge model at that damage level, these results are also used for verification of 

the EKF results afterwards. In Figure.7.3.1 effect of yielding can be clearly seen from 

the lengthening of the first modal period. Another observation would be after T-14, 
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the second mode (3.7 Hz) and third mode (13.7 Hz) are no more visible. The modal 

shapes indicated by circles for the WN-1 can also be seen (top view of deck). 
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Figure.7.3.1 Fourier Spectral Results Obtained from White Noise Input 

 
 
 
 
7.3.1.2. Frequency Domain Identification Using Ending Portions of Earthquake 
Motions 
 
The strong input motions cause damages in the structure and results in non-linear 

system behavior. So the Fourier transform cannot be performed over the whole time 

history. One way is to use short time frequency transform in which the whole time 

history is divided into segments and it is assumed that the system performs linear 

within these segments. Afterwards the change in natural frequency can be tracked and 

attributed to damage. What is done in this study is just to focus on the ending portions 

of the response (Figure 7.3.3). In this part of the response because the input level is 

low, system behaves in the linear range. The only problem is that identified modal 

frequency is dependent where the ending portion is taken. This effect can be seen in 

Figure 7.3.4. The identified natural frequency represents the condition of the system 

after the damaging event.  The change of the dynamic characteristics over the four 

tests can be tracked in Figure 7.3.5.  This value can be compared to the one obtained 

before the event and a conclusion can be made.  To represent the system one input 
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and one output channels are chosen for which the ratio of them stands for the system, 

structure.     

 

 

 
 

 
 
 

Figure 7.3.2 Sensor Locations and System Identification Methodology 
 
 

 
Figure 7.3.3 Time History Portion Used for the Identification 
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Figure 7.3.4 Identified Natural Frequency with Different Starting Points of the Ending 
Portion 
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Figure 7.3.5 Identified Natural Frequencies Using End Portions 
 
 

In Table 7.3.1, identified frequencies obtained from the white noise and ending 

portions of the strong motion input are compared. The percent change in the identified 

frequencies obtained from the ending portions are calculated based on the reference 

identification.  In parenthesis max value of the input motion is given.   

 
 

Table 7.3.1 Comparison of Identified Natural Frequency Using  
White Noise and End Portions 
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Reference 
(White Noise) 
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1.56 Hz 
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7.3.2. Time Domain Identification 
 
 
Finite Element Model and Calibration 
 
 

An FE model was generated in MATLAB, which is afterwards used as embedded in 

the EKF code itself.  Figure.7.3.6 shows the degree of freedom (DOF) assigned to the 

model; each node has both translational and rotational DOF.  During the analyses 

rotational DOF are condensed (Transformation going back and forth between the true 

and condensed model is performed when needed). The DOF 1-2-7-9-10-11-13-5 are 

the same as the sensor locations; DOF 8-12 are created so that additional mass could 

be assigned; DOF 3-4-6 were assigned so that the lower and upper portions of each 

column could be treated as an extended state for the EKF. 

 

 
 

Figure.7.3.6 Schematic View of Finite Element Model 
 
 

As a first step, FE model was calibrated using the WN-1 input so that the 

characteristics of the undamaged model could be matched. Modal frequencies and 

shapes were used for stiffness calibration, mass was thought be calculated pretty 

much perfectly. Afterwards response was simulated by this calibrated model and the 

white noise measurement was used to check the damping level. Although any kind 

could be used, it was seen that Rayleigh Damping was satisfactory.  In Table 7.3.2, 

modal frequencies and shapes obtained from FE model and white noise analysis can 

be seen.  
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Table 7.3.2 Finite Element Model Calibration 
Shape (DOF) Mode1 Frequency (Hz) 7 9 10 11 13 

WN-1 2.93 1 0.83 0.68 0.53 0.34 
FE Model 2.95 1 0.85 0.67 0.51 0.31 

Shape Mode2 Frequency (Hz) 7 9 10 11 13 
WN-1 3.70 1 0.61 0.30 -0.05 -0.43 

FE Model 3.69 1 0.62 0.31 -0.08 -0.40 
Shape Mode3 Frequency (Hz) 7 9 10 11 13 

WN-1 13.70 -0.79 0.61 1 0.61 -0.79 
FE Model 12.29 -0.72 0.55 1 0.55 -0.72 

 
 
Damage Detection Results Based on EKF 

 
Using this calibrated model, EKF was run for each of the strong ground motions one 

after another. At each time step the state transition matrix is obtained analytically 

from the FE model already embedded into the code and each five steps of EKF are 

implemented, the structural stiffness is corrected after and the new Jacobian matrix 

which is used for state transition matrix, is calculated again. So at the end of the 

strong input motion, the structural stiffness value at any assigned portion Figure.7.3.7 

and the estimation of the response Figure.7.3.8 are obtained.  
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Figure.7.3.7 Comparison of Responses at DOF 10 for T-13  
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Figure.7.3.8 Stiffness Reduction During T-13 
 
 

 The level of noise in the data is quite high.   Figure 7.3.9 shows an example 

where the measurement obtained in T-13 is filtered with a low pass of 20 Hz, and the 

filtered data matches the simulated one better. 
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Figure.7.3.9 Comparison of Responses at DOF 10 for T-13 (Filtered) 
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There is a trade-off between the performance of tracking of any change in 

extended states and the estimation of measurement. The P0, x0 values turn out to be 

detrimental: assigning a very different initial value to x0 than its true value might 

result in a wrong value.   However in structural identification problems, almost 

always we have a rough estimate for the initial value.  For this test it was seen that up 

to around 20% fluctuation of the initial guess could be compensated.  On the other 

hand the P0 value determines how much we allow the EKF to trace the changes, i.e. 

we can choose P0 such that all the importance is given to the measurement so the data 

can be fitted perfectly.   In this case, however, the extended states stay unchanged.  If 

we give too much importance to the model, the changes in the extended states might 

be dramatic.  A true region for P0, which gives the same results for the extended states, 

can be figured out after several trials.  It was also observed that the results obtained 

are prone to the number of extended states. Assigning all the portions which are 

thought to be susceptible to any change as an extended state is observed to be 

effective, e.g. assigning just the lower portions of the bents as extended states would 

give different results.  Figures 7.3.10 - 7.3.12 show the identified reduction in 

structural elemental stiffness during the earthquake shaking.  Figure 7.3.13 shows the 

comparison of the measured acceleration response with the simulated one using the 

identified elemental stiffness during T-19.  The good agreement demonstrates the 

effectiveness and accuracy of the stiffness identification algorithms developed in this 

study. 
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Figure.7.3.10 Stiffness Reduction During T-14 
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Figure.7.3.11 Stiffness Reduction During T-15 
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Figure.7.3.12 Stiffness Reduction During T-19 
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Figure.7.3.13 Comparison of Responses at DOF 10 for Test-19 
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In Table 7.3.3 the frequencies obtained from the measurement under the low-

level white noise input is compared with those obtained from FE model with the 

stiffness values identified from the EKF (estimated).   It can be seen that modal 

frequencies are quite close to each other. The possible reason for slight discrepancy in 

the latter earthquake motions might be due to some cracking on the bridge model 

(other than the plastic hinges) which was not taken into account in the EKF 

formulation. 

 
Table.7.3.3 Comparison of First Modal Frequency 

Input Measured 
(Hz) Estimated (Hz) 

WN-1 2.93 2.94 
T-13  2.74 
T-14  2.55 

WN-2 2.54  
T-15  1.82 

WN-3 1.76  
T-19  1.64 

WN-4 1.56  
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 Chapter 8 
 

FIELD TEST ON WEST ST.            
ON-RAMP 

For the West St. On-Ramp (WSO), two field tests have been carried out under a 

controlled environment using a test vehicle (a water truck). The first one was right 

after the completion of the bridge construction in 2001, while the second one was in 

2006.  Both braking and bumping tests  were carried out, based on which the dynamic 

characteristics of the bridge were identified and compared.  The second test also 

included a static load test.  

 

8.1 Static Load Test 

The purpose of the static load test was to verify the FE model of the WSO.  The test 

was carried out on September 8, 2006, by parking a test vehicle at various locations of 

the bridge and measuring the strain responses using the embedded strain sensors.   

Then the measured strains were compared with those computed from the FE model.  

 

8.1.1  Load Cases  

The static test was carried out by parking the test vehicle in various locations.  Figure 

8.1.1 shows the test vehicle location in the transverse direction.  The test vehicle was 

driven along path T-1 which is 2’ away from the left guide wall of the bridge and then 
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parked at the selected locations along the longitudinal direction, as shown in Table 

8.1.1 and Fig. 8.1.2.  Each load case is chosen to produce the maximum strain for 

each of the embedded strain sensors, whose locations are shown in Fig. 5.1.1.   

Table 8.1.1 Test Vehicle Locations in Longitudinal Direction  

Load Case L-1 L-2 L-3 L-4 L-5 

Distance 2.50’ 77.60’ 135.16’ 238.93’ 277.05’ 

      

 

Fig. 8.1.1 Test Vehicle Locations in Transverse Direction 

 

 

Figure 8.1.2 Test Vehicle Locations in Longitudinal Direction 
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8.1.2  Test Vehicle 

Fig. 8.1.3 shows the axle loads and distances between axels of the test vehicle used 

for the field test.  It has 3 axles, and the distance between the first and second axle is 

16’ and the second and third axle is 4’. The distance between tires is 6’-8”. The axle 

load is 16 kips for front axle and 19 kips for each rear axle. 

4' 16'

6'
-8

"

16 kips19 kips19 kips
 

Figure 8.1.3 Axle Load of the Test Vehicle 

 

8.1.3  Static Test Results and Comparison with Analysis 

The strain time histories of all the embedded strain sensors recorded during the static 

load test (case T-1) are plotted together in Fig. 8.1.4.  The test vehicle was driven 

along the path and parked at each location for about 20 seconds.  Table 8.1.2 

summarizes the strain from each static load case.  The shaded values are the 

maximum or minimum strains. 

The strains under the same vehicle load was analyzed using the finite element (FE) 

model.  The stiffness values in the FE model were computed  based on the design 

drawing.  Table 8.1.3 shows the computed maximum strain at the sensor locations 

under the test vehicle load. The values in parenthesis indicate the difference between 
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the measured and computed strains.  Except R10, all measured strains are smaller 

than the computed ones, indicating the stiffness of the actual bridge structure is higher 

than the one designed for.  In addition, the computed strains of R2 and R3 are higher 

than those of R8 and R9, implying that the girder members above the bent are 

designed more conservatively than those in the middle of the span.    

 

Figure 8.1.4  Strain Time History of All Sensors 
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Table 8.1.2 Measured Strain from Static Test  

Sensor L-1 L-2 L-3 L-4 L-5 

R-1 0.243 0.126 -0.065 -0.196 -0.139 

R-2 -0.033 1.456 -0.789 0.408 0.167 

R-3 -0.358 -2.682 -0.275 -1.555 -0.797 

R-4 -0.162 -0.445 -1.188 -0.521 0.176 

R-5 0.710 1.410 1.757 -0.577 -1.081 

R-6 -0.739 -3.196 -3.610 -1.777 -1.282 

R-7* -0.002 -0.075 -0.016 -0.078 -0.096 

R-8 -0.053 -0.705 -0.005 11.599 7.381 

R-9 -0.006 -0.218 0.070 9.850 5.304 

R-10 0.688 0.038 -0.126 0.058 0.167 

* : out of order 

Table 8.1.3 Computed Maximum Strain  

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

0.595 

(1.44) 

5.370 

(2.69) 

-12.320 

(3.59) 

-5.398 

(3.54) 

4.110 

(1.34) 

-4.110 

(0.14) 

-9.753 

( - )* 

22.772 

(0.96) 

14.327 

(0.45) 

0.595 

(-0.14) 

* : out of order,   values in parenthesis  : 
measured

measuredcomputed

µ
µµ −

 

 

8.2  Braking and Bumping Tests 

The braking and bumping tests were carried out twice over a period of five years.  

The first one was carried out in 2001 when the bridge construction was completed 

(Feng and Kim, 2001).  The second braking and bumping test took place in 2006 at 

the same time when the state test was performed.  The same test vehicle was used.   

The purpose of the breaking and bumping test was to identified the dynamic 

characteristics of the bridge and their change over the five years. The details of the 

first test were documented in the Caltrans report by Feng and Kim (2002).   This 

report focuses on the second test.   
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8.2.1  Test Procedure 

The test procedures for  both tests were identical.  In the braking test, the excitation 

force was applied to the bridge by suddenly applying a break to the test vehicle at the 

middle of span 2.  Although the applied breaking force was not high enough to excite 

higher vibration modes of the bridge, the first three modes were identified from the 

bridge acceleration responses to the braking test.  In the bumping test, the test vehicle 

was driven over a wooden block at the middle of span 2.  

 

Figure 8.2.1 Exciting Force Location of Braking and Bumping Test 

 

8.2.2  Braking Test Results 

Locations of accelerometers 

To improve the accuracy of the mode shape identification,  six fiber optic 

accelerometers (FOA) developed by the first author were temporarily installed on the 

WSO, in addition to those permanently installed conventional force-balance 

accelerometers. Fig. 8.2.2 shows the locations of the both types of the accelerometers, 

in which the conventional accelerometers are marked with “A”. 
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Figure 8.2.2 Locations of Fiber Optic Accelerometers 

Mode frequency and mode shape 

Figure 8.2.3 shows example acceleration time histories from both the conventional 

force-balance type accelerometer and fiber optic accelerometer.    

 

(a) Force-balanced Type Accelerometer (A10) 

 (b) 
Fiber Optic Accelerometer (FOA1) 

Figure 8.2.3  Acceleration Time History from Braking Test  
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The power spectral density (PSD) functions from the time histories are shown in Fig. 

8.2.4 and Fig. 8.2.5, respectively for those measured by the conventional 

accelerometers and the fiber optic accelerometers.  The mode frequencies measured 

by the both types of the accelerometers are very close to each other.   From the PSD’s, 

mode frequencies of bridge were identified, as shown in Table 8.2.1.   The 

frequencies identified from the 2001 bumping test were also listed for comparison 

purposes.  The first and second mode frequencies identified from the 2006 bumping 

test have decreased by approximately 12% and 7%  respectively in comparison with 

those identified from the 2001 bumping test.  It is noted that after the 2001 test,  a 

sound wall was constructed on the WSO.  Taking into consideration of the weight of 

the sound wall, it is found from analysis that each of the first and second mode 

frequencies reduces by approximately 5%.  Therefore, 7% and 2% reductions 

respectively in the first and second mode frequencies are observed during this five 

year period. 

 

Figure 8.2.4 PSD from Conventional Accelerometer 



 169

 

Figure 8.2.5 PSD from Fiber Optic Accelerometer 

 

Table 8.2.1 Mode Frequency from Braking Test 

Mode First (Hz) Second (Hz) Third (Hz) 

2001 2.148 2.465 - 

Conventional 1.895(-11.8%) 2.305(-6.5%) 2.676 
2006 

FOA 1.856(-13.6%) 2.265(-8.1%) 2.637 
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Figure 8.2.6 Mode Shape from Braking Test (Vertical Direction) 
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Figure 8.2.7 Mode Shape from Braking Test (Transverse Direction) 

 

Figures 8.2.6 and 8.2.7 show the mode shapes of the bridge identified from the 

measurement and analysis in the vertical and transverse directions. The measured 

mode shapes match well with computed ones.  The first three mode shapes are 

coupled with the vertical and transverse modes.  The first and second mode shapes in 

the vertical directions are different, but those in the transverse mode are quite similar.  
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8.2.3  Bumping Test Results 

In the bumping test, the excitation force was applied by driving the test vehicle over a 

4X4 wooden block at the middle of span 2.  Figures. 8.2.8 through 8.2.10 show the 

time histories of acceleration measured at different locations .  

Figure 8.2.11 shows the PSD of the acceleration from bumping test. The comparison 

of the mode frequencies between the previous and present tests are given in Table 

8.2.2. The first and second mode frequencies identified from the present test are 

respectively reduced by 4.2% and 3.2% from the previous ones.  

 

 

Fig. 8.2.8 Time History of Acceleration at A10 

 
 

 

Fig. 8.2.9  Time History of Acceleration at A3 
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Fig. 8.2.10 Time History of Acceleration at A5 

 

Table 8.2.2 Mode Frequency from Bumping Test 

Test Year First mode (Hz) Second mode (Hz) Third mode (Hz) 

2001 2.100 2.441 - 

2006 2.012 (-4.2%) 2.363 (-3.2%) 2.656 

 

 

Figure 8.2.11 PSD from Bumping Test  
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8. 3  Dynamic Load Test 

8.3.1  Dynamic Load Cases 

The test vehicle was driven two times on the each lane. Because of the limited length 

of the approach road to WSO, vehicle speed was limited to about 10-20mph. Table 

8.3.1  summarize the dynamic load cases 

Table 8.3.1 Dynamic Load Cases 

Load cases Description 

RL-1 First driving on right lane  

RL-2 Second driving on right lane  

LL-1 First driving on left lane  

LL-2 Second driving on left lane  

 

8.3.2  Dynamic Strain Results 

Figures 8.3.1 through 8.3.3 show the strain time histories of R3, R5, and R8 as the test 

vehicle travels through the left lane of the WSO (under load case LL-1).  Table 8.3.2 

shows the measured  maximum dynamic strain values from each sensor and Table 

8.3.3 shows comparison of the maximum strains from the moving load analysis, static 

load test, and dynamic load test. 

In Table 8.3.3 the difference between the static and dynamic strains varies at different 

sensor locations. The high dynamic strains at R1 and R10 show the impact effect 

from the expansion joint at the beginning of the bridge.  It is noted that the differences 

between the dynamic and static strains at R2 and R3 are higher than those at R8 and 

R9.  This indicates that the bridge superstructure elements above the column are more 

affected by the dynamic moving vehicle than those in the middle of the span. 
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In the column the difference between the static and dynamic strains varies in different 

directions.  It is found that the strain in the longitudinal direction (R4) is more 

affected by the moving vehicle than that in the transverse direction (R5 or R6). 

 

Figure 8.3.1 Time History of Strain at R3 

 

Figure 8.3.2 Time History of Strain at R5 

 

Figure 8.3.3 Time History of Strain at R8 
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Table 8.3.2 Measured Dynamic Strain 

Sensor RL-1 RL-2 LL-1 LL-2 

R-1 1.966 1.692 0.769 0.709 

R-2 4.180 4.224 2.436 2.436 

R-3 -0.778 -4.066 -3.797 -3.693 

Min -4.880 -1.235 -1.667 -1.399 
R-4 

Max 1.019 0.570 0.674 0.959 

Min -2.121 -4.279 -1.818 -1.672 
R-5 

Max 1.878 2.109 1.681 2.264 

Min -0.245 -1.800 -3.717 -4.465 
R-6 

Max 1.524 1.533 0.615 0.258 

R-7* -1.177 -0.285 -0.302 -0.228 

R-8 16.397 15.987 12.091 11.550 

R-9 8.353 8.274 12.054 11.574 

R-10 0.654 0.559 1.300 1.317 

 

Table 8.3.3 Comparison of Strain  

Sensor Analysis Static test (1) Dynamic test (2) 
Difference 

)1(
)1()2( −

=
 

R-1 0.595 0.243 1.966 7.090 

R-2 5.370 1.456 4.224 1.901 

R-3 -12.320 -2.682 -4.066 0.516 

R-4 -5.398 -1.188 -4.880 3.108 

R-5 4.110 1.757 2.264 0.288 

R-6 -4.110 -3.610 -4.465 0.236 

R-7* -9.753 - - - 

R-8 22.772 11.599 16.397 0.414 

R-9 14.327 9.850 12.054 0.224 

R-10 0.595 0.688 1.317 0.914 

* :  out of order 
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8.3.3  Mode Frequency  

Figures 8.3.4 through 8.3.6 show the acceleration time histories of A3, A5, and A10 

under the dynamic load case LL-1.  Table 8.3.4 shows the extracted mode frequency 

from the measured acceleration time histories. Compared with the previous braking 

test results in 2001, the first and second mode frequencies are reduced by 14.1% and 

6.3% respectively.  However, considering the weight of the sound wall (that was built 

on the bridge after the first breaking test in 2001), the frequencies of the first and 

second modes are each reduced by 5%.  Therefore, it is reasonable to state that 9.1% 

and 1.3% change in the first and second mode frequencies are observed between  the 

first and second vehicle breaking tests.  

Table 8.3.4  Mode Frequency from Dynamic Load Test  

Mode RL-1 (Hz) RL-2 (Hz) LL-1 (Hz) LL-2 (Hz) Average 

1st 1.895 1.758 1.895 1.836 1.846 (-14.1%)* 

2nd 2.324 2.305 2.305 2.305 2.309(-6.3%)* 

3rd 2.636 2.695 2.715 2.676 2.681 

  * : The values in parenthesis are the difference from the results of braking test in 2001 

 

 

Figure 8.3.4 Time History of Acceleration at A10 
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Figure 8.3.5 Time History of Acceleration at A5  

 

 

Figure 8.3.6 Time History of Acceleration at A3  
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Chapter 9 
 

DEVELOPMENT OF DATABASE 

In this chapter, development of database for the modal frequency values is first 

presented for all the three instrumented bridges. A large amount of data has been 

collected for the Jamboree Road Overcrossing (JRO) and the database reveals the 

scattering of frequency values over a long period of time.  In the second part of the 

chapter, a database for structural element stiffness values is presented.  The stiffness 

values were identified using the neural network-based identification method 

developed in this project.  

 

9.1 Database for Modal Parameters  

From the traffic-induced ambient vibration data sets the mode frequencies were 

derived using the frequency domain decomposition (FDD) method.  A database of the 

modal frequencies has been developed for each of the three instrumented bridges. 

 

9.1.1 JRO  

As discussed in Chapter 4, 1707 traffic-induced vibration data sets have been 

manually since 2002.  For the last two months five-minute long data are retrieved 

wirelessly every hour.  Based on these measured acceleration time histories, modal 

frequencies of the bridge were identified.  The variations of the first four modal 

frequencies are shown in Figure 9.1.1-9.1.4 throughout a four-year period from 2002 

to 2006.  As seen in the figures, the change in the identified modal frequencies is in 
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the order of +/-10%.  Whether this change is due to the change in the environment or 

in structure is under investigation.  
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Figure 9.1.1 First Modal Identification Results 
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Figure 9.1.2 Second Modal Identification Results 
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Figure 9.1.3 Third Modal Identification Results 
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Figure 9.1.4 Fourth Modal Identification Results 
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9.1.2  WSO  

Controlled Vibration Test 

As described earlier, a controlled vibration test was performed using a fully loaded 

water truck in 2001 before the bridge opened to traffic.  The test included braking 

(suddenly applying brake) and bumping (driving over a block) test.  Table 9.1.1 

shows the identified modal frequencies from the vibration response data collected at 

the braking and bumping tests, together with those computed from the finite element 

analytical model.  It is noted that the modal frequencies identified from the bumping 

test are lower than those from the braking test.  This is because the bumping test 

caused more intense vibration to the bridge than the braking test.   

 

Table 9.1.1 Modal frequencies from controlled vibration test (Hz) 

Mode FE Braking vibration test Bumping vibration test 

1 2.12 2.15 2.10 (-2.33) 

2 2.70 2.47 2.44 (-0.97) 

3 2.72 - - 

Note: The values in the parentheses are the differences (%) between braking and bumping results 

Ambient Vibration 

During a two-year period of monitoring from January, 2004 through January, 2006, 

totally 92 traffic-induced vibration data sets were recorded from at WSO.  The 

triggering threshold was set at 0.002g, in order to record the bridge responses to only 

heavy vehicles.  Figure. 9.1.5 shows the distribution of the 92 data sets according to 

the triggered time, from which it is observed that most of the data sets were recorded 

between 4 A.M. and 8 A.M..  
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Figure 9.1.5 Distribution of Data Recording Time 

 

Figure. 9.1.6 shows typical acceleration time histories under vehicle excitations. 

Figure. 9.1.6 (a) and (b) are the transverse accelerations at the middle of span 1 and 2, 

while (c) and (d) are the vertical accelerations at the same locations. It is observed 

from these figures that the magnitude of the vertical acceleration is higher than that of 

the transverse one under traffic excitations. 
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 (a) Transverse (A2) 

 

(b) Transverse (A9) 

 

(c) Vertical (A3) 

 
(d) Vertical (A10) 

Figure 9.1.6 Typical Traffic-Induced Accelerations in Middle of Spans 1 and 2 
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From the ambient vibration data sets the mode frequencies were derived using the 

frequency domain decomposition (FDD) method. Table 9.1.2 shows the modal 

frequencies extracted from the recorded ambient vibration data.  It is noted that the 

first or second mode frequency was not found from some of the data sets in the table.  

Even during the same day, for example, January 30, 2004, the first modal frequency 

was not found from the data recorded at 7:23 A.M., though it was identified from the 

other three data sets.  Considering that the recorded data were under heavy vehicles, 

the lack of the first or second mode vibration can be attributed to the effect of the 

dynamic characteristics of the moving vehicles.   

 

Table 9.1.2 Modal Frequencies Identified from Ambient Vibration Records  

2004 2005 

01/30 03/30 Mode 

6:40 6:43 7:23 7:33 4:03 4:27 
04/06 05/17 09/21 09/23 

1 (Hz) 
1.99 
(-7.4) 

1.99 
(-7.4) 

- 
1.99 

(-7.4) 
- - 

1.94 
(-9.7) 

- 
1.95 

(-9.2) 
1.90 

(-11.5) 

2 (Hz) 
2.42 
(-1.8) 

2.42 
(-1.8) 

2.44 
(-1.0) 

2.42 
(-1.8) 

2.41 
(-2.2) 

2.41 
(-2.2) 

- 
2.40 

(-2.6) 
2.40 

(-2.6) 
2.35 

(-4.7) 

3 (Hz) 2.79 2.83 2.81 2.83 2.77 - 2.81 2.74 2.79 2.72 

4 (Hz) 3.49 3.48 3.45 3.43 3.47 3.49 - - - 3.44 

Note: The values in the parentheses are the differences (%) between the ambient and 2001 braking test 

results 

 

The numbers in parentheses in Table 9.1.2 indicate the differences between the 

frequencies identified from the ambient vibration data and those from the 2001 

braking test.  Compared with the 2001 braking test results in Table 9.1.1, the first and 

second mode frequencies were respectively reduced by 8.8% and 2.5%. However, the 

frequency reduction cannot be wholly attributed to the stiffness reduction of the 

bridge because the mode frequencies from ambient vibration are compared with the 
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results from braking test. The existence of the sound wall on the bridge is another 

reason. When the braking test was conducted in 2001, there was no sound wall on the 

bridge. From the finite element analysis the effect of the sound wall on the first three 

mode frequencies was found as nearly 5%. So the frequency reduction is 2-4% for the 

first mode.  

Scattering of the identified modal frequencies over the two-year monitoring period is 

shown in Figure 9.1.7 

 

Figure 9.1.7 Mode Frequency Change at WSO 

 

Earthquake Vibration 

One earthquake was recorded during the two-year monitoring of the WSO.  It was the 

Yucaipa earthquake on June 16, 2005 with a magnitude 4.9.  The accelerations at the 

bottom of column 2, as shown in Figure 9.1.8, can be considered as the input ground 

motion to the bridge.  The dominant ground motion component is in the transverse 

direction with a peak ground acceleration 0.173g. 
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Using the ground motion input and the superstructure response output, the frequency 

response function (FRF) can be obtained as    

)(
)()(

ω
ωω

F
XH =                                 (9-1) 

where )(ωX = power spectral density function of the response acceleration at the 

superstructure; )(ωF = power spectral density function of the input motion. 

 

(a) Longitudinal direction (A6) 

 

(b) Transverse direction (A7) 

 

(c) Vertical direction (A8) 

Figure 9.1.8 Ground Motion of the Yucaipa Earthquake 

Figures 9.1.9 (a) and (b) plot FRF’s when the transverse acceleration at the bottom of 

column 2 is used as the input motion and transverse accelerations at different 

locations of the superstructure as the output motion.  The first three modal frequencies 

can be clearly identified and their values are shown in Table 9.1.3. The first and 
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second modal frequencies are 1.95 and 2.34 Hz respectively.  The numbers in 

parentheses indicate the frequency reduction from the 2001 braking test results in 

Table 9.1.1. The first and second modal frequencies decreased by 9.1% and 4.9% 

respectively from the initial braking test results.  The amount of reduction in the 

modal frequencies is very similar to those in Table 9.1.2 identified from the ambient 

vibration tests.  During the earthquake, heavy vehicles were not found on the bridge 

from the strain monitoring records.  Therefore, the identified modal frequencies are 

not affected by moving vehicles. 

Table 9.1.3 Modal Frequencies Identified from the Yucaipa Earthquake 

Mode Transverse (Hz) Vertical Dir (Hz) 

1 1.95 (-9.1%) 1.95 (-9.1%) 

2 2.10 2.10 

3 2.34 (-4.9%) 2.34 (-4.9%) 

4 2.54 2.54 

 

 

(a) Output motion- Transverse 

 

(b) Output motion-Vert. & long. 

Figure 9.1.9 Frequency Response Functions of WSO under Earthquake 
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9.1.3  FROO  

 

This subsection first develops a finite element (FE) model of the Fairview Rd. On-

Ramp Over-crossing (FROO), and then identifies modal frequencies of the bridge 

based on measured ambient vibration data in comparison with the analytical ones.  

 

9.1.3.1 Preliminary Finite Element Model 

Finite element modeling  

Finite element analysis of the FROO was carried out using the commercial structural 

analysis program Midas ver.6.3. The 3-dimensional beam element was used for the 

superstructure and columns. The superstructure component was modeled with a total 

of 80 beam elements and each column with 4 beam elements.  Figure 9.1.10 shows 

the finite element model of the bridge. 

 

Figure 9.1.10 Finite Element Model of FROO 

 

The boundary conditions of the columns were assumed as fixed, while the bearings at 

the abutments of the bridge were modeled as linear horizontal, vertical, and rotational 

springs.  The bearing stiffness values at both ends of the deck were assigned as 

6.58×104 kip/ft for the longitudinal springs, and 1.29×105 kip/ft and 1.48×105 kip/ft 

for the transverse and vertical springs respectively. The rotational spring stiffness is 
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6.29×107 kip-ft/rad in the longitudinal direction and 3.5×107 kip-ft/rad in the 

transverse direction.  

Analytical Modal Frequencies and Shapes  

The first three mode shapes are shown in Figure 9.1.11 and the mode frequencies of 

the bridges are shown in Table 3.3.1. The first six mode frequencies of the FROO are 

very closely spaced between 2 ~ 2.6 Hz.  The first three vibration modes are vertical 

modes and the fourth mode is the first transverse mode.  
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(a)  The first mode shape (frequency : 2.085 Hz) 

 

(b)  The second mode shape (frequency : 2.168Hz) 

 

(c )  The third mode shape (frequency : 2.348Hz) 

Figure 9.1.11 Mode shapes of FROO  
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Table 9.1.4 Modal Frequencies of FROO 

Mode Period (sec) Frequency (Hz) 

1 0.479 2.085 

2 0.461 2.168 

3 0.426 2.348 

4 0.404 2.473 

5 0.382 2.618 

6 0.375 2.665 

7 0.320 3.126 

8 0.306 3.270 

9 0.203 4.925 

10 0.183 5.453 

 

9.1.3.2 Ambient Vibration Data and Modal Frequency Identification 

Some traffic-induced ambient vibration data have been collected at FROO.  Figure 

9.1.12 shows typical acceleration time histories at the middle of span 2 under traffic 

excitations. 
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(a) Middle of span 2 (A5-vertical direction) 

 

(b) Middle of span 2 (A5-transverse direction) 

Figure 9.1.12 Typical Traffic-Induced Accelerations  

 

From the ambient vibration data sets the mode frequencies were derived using the 

frequency domain decomposition method. Table 9.1.5 shows the modal frequencies 

extracted from the recorded ambient vibration on March 20, 2006.  Small variations in 

the identified modal frequencies were observed in the table. 

 

Table 9.1.5 Mode Frequencies Identified from Ambient Vibration Records 

Mode 3:48 
P.M. 

3:52 
P.M. 

3:54 
P.M. 

3:56 
P.M. 

3:58 
P.M. 

4:05 
P.M. 

4:07 
P.M. 

4:09 
P.M. 

1 (Hz) 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 

2 (Hz) 2.05 2.05 2.03 2.00 2.00 2.05 2.00 2.02 

3 (Hz) 2.32 2.29 2.32 2.29 2.29 2.29 2.29 2.29 
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Figure 9.1.13 Mode Frequency Changes of the FROO 

 

In order to obtain more accurate mode frequencies of the bridge, 10-minute 

acceleration data measured on March 20 were used for modal identification again. 

Figure. 9.1.14 shows the 10 minutes acceleration time histories.  Figures 9.1.15 

through 9.1.17 show the PSD’s from the measured acceleration data.  From the PSD 

of the vertical acceleration data, it was difficult to identify a peak around 1.5Hz. 

However, PSD from the transverse acceleration clearly shows a peak at 1.489Hz.  

From these results, the first three mode frequencies of the FROO were found to be 

1.489 Hz, 2.026 Hz, and 2.295Hz.   

 

From the FE analysis presented earlier, the first three modal frequencies were 2.085 

Hz, 2.168 Hz, and 2.348 Hz.  However the first modal frequency identified from the 

ambient vibration data is much lower than the computed one. The analytical model of 

the FROO is being updated to a baseline based on the measured vibration data. 
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(a) A-5 (transverse direction) 

 

(b) A-5 (vertical direction) 

Figure. 9.1.14 Acceleration Time History of the FROO 

 

 

Figure 9.1.15 PSD from All Acceleration Channels 
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Figure 9.1.16 PSD from Vertical Acceleration Channels 

 

Figure 9.1.17 PSD from Transverse Acceleration Channels 
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9.2 Database for Structural Parameters 

 
The back propagation neural network technique (e.g., Feng and Bahng 1999; Masri et 

al. 2000; Yun et al. 2001) was applied to obtain the elemental stiffness values based 

on the measured dynamic characteristics of the bridge. The neural network-based 

system identification method has several advantages compared with conventional 

system identification methods. The neural network approach is more capable of 

obtaining elemental stiffness values based on the partially and incompletely measured 

mode parameters due to the limited sensor number, and on only a few lower modes 

extractable from the vibration signals. Furthermore, it is very convenient to use the 

neural network to parameterize any properties of the structures, such as the effective 

shear area, as the unknowns to be identified. In contrast to many system identification 

methods in which the sensitivity matrix may become unstable especially for complex 

structural systems, the neural network approach does not require calculation of the 

sensitivity matrix, and thus can be applied to the complex civil engineering structures 

avoiding the numerical difficulty. 

As shown in Figure. 9.2.1, the neural network consists of an input layer, hidden layers, 

and an output layer. The relationship between input and output of a neural network 

can be nonlinear or linear, and its characteristics are determined by the weights 

assigned to the connections between the neurons in two adjacent layers. Changing 

these weights will change the input/output relationship of the network. A systematic 

way of determining the weights of the network to achieve a desired input/output 

relationship is referred to as a training or learning algorithm. The standard back 

propagation algorithm was used in this study, for training the neural network to 

identify structural parameters (the stiffness and the mass matrices of the bridge, and 

the spring stiffness at the abutments) from measured natural frequencies and mode 

shapes. The procedure of the neural network-based identification involves the 

following steps: (1) determining the types of input and output patterns; (2) preparing 
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the training and testing patterns through FE analyses; (3) training the neural network 

using the back propagation algorithm; and finally (4) estimating the structural 

parameters of the baseline FE model by inputting the measured natural frequencies 

and mode shapes to the well trained neural network. 

In the present study, the input pattern consists of the natural frequencies and the mode 

shapes. The output pattern consists of correction coefficients of structural parameters 

Training input–output data sets were obtained by extensive FE analyses with different 

sets of correction coefficients. 

 

Figure 9.2.1 Architecture of the Neural Network 
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9.2.1 JRO 

The first four modal frequencies and the first modal shape were taken as input, 

whereas the correction coefficients for the column and the superstructure as output for 

the neural networks.  Training patterns were generated using the computer code 

SAP2000. Table 9.2.1 shows the moments of inertia of the column and the 

superstructure based on the design drawings.  For training patterns, the values of the 

moment of inertia are varied from 0.2 to 1.2 times of ones based on the design 

drawings shown in Table 9.2.1. For each given moment of inertia values the 

corresponding frequencies are calculated using the program. The back propagation 

result was not satisfactory.  For example, the identified stiffness correction 

coefficients might be as low as 0.1 of the original stiffness which has no physical 

insight.  However, when the radial basis neural networks were employed, the 

identification results became quite meaningful. 

Table 9.2.1 Moment of Inertia of JRO 

Moment of Inertia (m4) 

Element Area (m2) 

Ix Iy 

Deck  5.94 7.63 3.01 

Column 3.53 2.51 0.72 

 

Once the neural network is trained, it can be used to identify the stiffness correction 

coefficients based on the measured modal information.  The identified results are 

shown in Figures 9.2.2 and 9.2.3.  It is observed that the column stiffness identified 

based on measurement is 85% of the one obtained from the design drawings, whereas 

the superstructure stiffness was 95% of the designed value.  In addition, there is a 

fluctuation in the identified stiffness; the column stiffness changes very little (less 

than 1%), while the superstructure stiffness fluctuates up to 6%.  The change is 

considered due to the temperature variation.  Further study incorporating temperature 

measurement is suggested. 
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Figure 9.2.2 Long-Term Variation in Column Stiffness  

 

 
 

Figure 9.2.3 Long-term Variation in Superstructure Stiffness 
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9.2.2 WSO 

 

Architecture of Neural Network  

Though the input parameters for the neural network can be dynamic characteristics of 

a structure such as mode shapes, mode frequencies, mode damping, etc., the first three 

mode frequencies are chosen as the input parameters for the identification of the 

elemental stiffness of the WSO because of the limited number of the installed 

accelerometers at the bridge and insufficient information regarding the mode shape.    

Since the flexural stiffness is the product of Young’s modulus and the moment of 

inertia of a cross section, the moments of inertia of the column and the superstructure 

were chosen as the output of the neural network.  More precisely, the output of the 

neural network includes two stiffness correction coefficients, one for superstructure 

and the other for the columns, and one stiffness correction coefficient of the soil 

springs at the bridge abutment.  

The back-propagation neural network with two hidden layer is selected. Each hidden 

layer has 10 nodes i.e. neurons.  Tangent sigmoid function and pure linear function 

were used as the transfer function for hidden layers and output layer, respectively.  

 

Training Patterns 

Training patterns were generated using the program “OpenSees”.  Table 9.2.2 shows 

the moment of inertia of the column and the superstructure from the design drawings 

and Table 9.2.3 shows the spring stiffness of the abutment boundary condition 

assumed based on the FHWA recommendation.  In Table 9.2.3 the longitudinal and 

transverse directions of the bridge were assumed as X and Y axes respectively, while 

the vertical direction is  Z axis.  To generate the training patterns, the correction 

coefficients of both the superstructure and columns were varied from 0.7 to 1.0 and 
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0.5 to 0.9 for the soil springs. For each set of the correction coefficients, the 

corresponding modal frequencies of the bridge were calculated using “OpenSees”. 

Table 9.2.4 shows the examples of training patterns for the WSO.  Totally 4805 

training sets were generated. 

 

Table 9.2.2 Moment of Inertia of the Column and the Deck Component (ft4) 

Column Deck 

Iy Iz Iy Iz 

3.221x102 3.221x102 6.340x102 5.623x103 

 

 

Table 9.2.3 Spring Stiffness of Abutment Boundary Conditions 

Direction Stiffness 
(kip/ft) 

Direction Stiffness 
(kip·ft/rad) 

Translation X 6.586x104 Rotation about X 
axis 

6.290x107 

Translation Y 1.292x105 Rotation about Y 
axis 

0 

Translation Z 1.480x105 Rotation about Z 
axis 

3.500x105 

 

 

Table 9.2.4 Training Patterns for the WSO 

Input (Frequency) Output (Correction coefficient) 
No 

1st  2nd  3rd  C(Icolumn) C(Ideck) C(B.C) 

1 1.751 2.086 2.357 0.700 0.700 0.500 

2 1.762 2.128 2.381 0.700 0.700 0.600 

… … … … … …  

4805 2.084 2.509 2.819 1.000 1.000 0.900 
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Verification of Trained Neural Network 

A neural network model was built using “Matlab”.  To avoid the overfitting problem 

in neural networks, an early stopping method was employed.  Table 9.2.5 shows the 

target output of the neural networks and the identified one. 

Table 9.2.5 Verification of Trained Neural Network 

Target Identified from Neural Networks 
No 

C(Icolumn) C(Ideck) C(B.C) C(Icolumn) C(Ideck) C(B.C) 

1 0.700 0.700 0.500 
0.679  

(-0.030) 
0.684  

(-0.022) 
0.493  

(-0.014) 

2 0.700 0.700 0.600 0.715 
(0.021) 

0.691 
(-0.012) 

0.569  
(-0.051) 

3 0.700 0.700 0.700 0.718 
(0.025) 

0.686  
(-0.020) 

0.673  
(-0.038) 

… … … … … … … 

Note : The values in parenthesis are the difference between target and identified values 

 

Identified Elemental Stiffness 

The correction coefficients for 92 data sets were found by introducing the first three 

mode frequencies obtained from the data to trained neural network. Figure. 9.2.5 

shows the extracted mode frequencies and Table 9.2.6 shows the results of the 

identified correction coefficients.  
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Table 9.2.6 Modal Frequencies Identified from Ambient Vibration Records 

Input (Hz) Output 
Date 

First Second Third C(Icolumn) C(Ideck) C(B.C) 

2004/ 01/30 1.99 2.42 2.79 0.897 0.946 1.150 

2004/ 03/30 1.91 2.42 2.75 0.991 0.930 1.168 

2004/ 10/21 1.99 2.38 2.77 0.825 0.937 1.112 

2004/ 11/03 1.91 2.40 2.59 0.894 0.819 0.959 

2004/ 12/16 1.97 2.40 2.71 0.825 0.938 1.070 

2005/ 02/ 11 2.03 2.36 2.81 0.892 0.911 1.071 

2005/ 03/ 17 1.99 2.41 2.83 1.009 0.850 1.202 

2005/ 05/ 17 1.95 2.40 2.73 0.874 0.937 1.148 

2005/ 08/ 02 1.93 2.38 2.73 0.903 0.921 1.160 

2005/ 09/ 21 1.95 2.40 2.79 0.940 0.923 1.174 

2005/ 09/ 23  1.90 2.35 2.72 0.932 0.876 1.180 

2005/ 10/ 28 1.99 2.42 2.78 0.884 0.948 1.141 

2005/ 11 /22 1.93 2.63 2.71 0.960 0.934 1.153 

2005/ 12/ 23 1.97 2.35 2.75 0.796 0.927 1.114 

2006/ 01/ 14 1.99 2.42 2.81 0.930 0.933 1.166 

2006/ 02/ 03 1.95 2.38 2.77 0.899 0.921 1.168 

2006/ 03/ 13 1.99 2.42 2.85 1.158 0.681 1.265 

2006/ 03/ 24 1.97 2.42 2.83 1.008 0.873 1.195 

2006/ 05/ 08 1.97 2.40 2.75 0.858 0.940 1.138 

2006/ 06/ 08 1.97 2.36 2.71 0.771 0.935 1.018 

2006/ 09/ 
08* 1.90 2.31 2.68 0.812 0.872 1.148 

2006/ 09/ 
08** 2.01 2.36 2.66 0.988 0.904 0.462 

Average 1.96 2.39 2.75 0.911 0.903 1.107 

*: Field test -braking test,  ** : Field test - bumping test 
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The average correction coefficient values were found to be 0.911 for the columns, 

0.903 for the superstructure, and 1.107 for soil springs.  So the stiffness values of the 

superstructure and columns are 10% lower than the designed ones.  Table 9.2.7 and 

9.2.8 show the updated values of the moment of inertia and the spring stiffness of the 

abutment boundary condition. 

 

Table 9.2.7 Updated Moment of Inertia of Column and Deck  

Column (ft4) Deck (ft4) 

Iy Iz Iy Iz 

2.934x102 2.934x102 5.725x102 5.078x103 

 
 

Table 9.2.8 Updated Spring Stiffness of Abutment Boundary Conditions 

Direction Stiffness 
(kip/ft) 

Direction Stiffness 
(kip·ft/rad) 

Translation X 7.29x104 Rotation about X 
axis 

6.96x107 

Translation Y 1.43x105 Rotation about Y 
axis 

0 

Translation Z 1.64x105 Rotation about Z 
axis 

3.87x105 
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9.3 Summary and Design Recommendations  

In this chapter, vibration measurement data for the instrumented bridges were 

presented and analyzed.  By means of the neural network-based identification method, 

structural stiffness values were identified based on the measured modal frequencies 

and shapes.  For JRO, the identified bridge superstructure stiffness was 5% and the 

column stiffness was 15% lower than the design values.  For WSO, the identified 

stiffness was 10% lower for the superstructure as well as for the column.   

 

From the data collected at JRO over a period of four years,  +/- 10% fluctuation in the 

identified modal frequencies were observed.  However, the column stiffness had little 

fluctuation while the superstructure stiffness fluctuated up to 6% over the four-year 

observation period.  Similar findings were examined for the other two bridges. The 

identified stiffness values also agreed well with those obtained by using the different 

identification methods presented in Chapter 6.  The fluctuation in the identified 

stiffness is considered due to change in environmental conditions such as temperature.  

Further study is suggested by incorporating temperature measurement.  
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Chapter 10 

 DEVELOPMENT OF SOFTWARE 

This chapter presents a software package developed in this project for identifying 

structural stiffness based on vibration measurement.  The software has a number of 

functions including data acquisition, modal parameter identification and animation, 

and more importantly, structural stiffness identification, and database operation.  With 

this software, data from an instrumented bridge can be processed, bridge stiffness 

identified and stored into a database. 

 

10.1 List of Software Modules 

 

As illustrated in Figure 10.1.1, major functions of the software include 

(1) vibration data acquisition and time-history display,  

Binary data are acquired and converts to ascii format for storage.  

(2) extraction of modal parameters using the frequency domain decomposition 

(FDD) method, display of modal frequencies and mode shapes, update a 

modal parameter database 

(3) identification of structural elemental stiffness, and 

(4) stiffness evaluation in comparison with those in the database, and update 

of database 

For the demonstration purpose, the neural network-based identification method is 

incorporated into the current version of the software.  Other methods developed in this 

project as described in Chapter 6 can be incorporated into this software. 
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Figure 10.1.1 Major Functions of the Software 

 

In the software package there are three files that are related with the end user: 

1. SHMS.exe 

2. Folder “Data” 

3. Folder “Database” 

 

SHMS.exe 

This is the executable file for the software. When it is run the first window will appear 

as shown in Figure 10.1.2.  One can choose a bridge to analyze from the pre-stored 

drop-down menu.  

 

 

Data 
Acquisition 
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Display 

FDD 
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Modal Display  
&Animation 

Performance 
Information 
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Figure 10.1.2 Bridge Selection Window 

Upon selecting the bridge, the second window will appear as shown in Figure 10.1.3. 

This is the main interface for the software. 

 

 

Figure 10.1.3 Main Interface for the Software 

 

The modules of the software are listed as follows: 

1. Bridge File 

i. Open Bridge File 

ii. Exit SHM 

2. Data Conversion 

i. Convert Format  

ii. Display Signal 
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3. Modal Analysis 

i. Combine Files 

ii. FDD Analysis 

4. Neural Network 

i. Testing 

5. Database View 

i. Modal Parameters 

ii. Elemental Stiffness Values 

6. Bridge Info 

i. Location Map 

ii. Sensor Configuration 

iii. File Naming Rules 

 

Data Folder 

In this folder one can find subfolders.  Each has the name of the bridge. Each of them 

has the information listed below: 

(1) Bindata: The raw data obtained from the data logger of the bridge are stored in 

this folder. 

(2) Txtdata:  The software converts the binary data to text data save under this 

folder. 

(3) Picture: The pictures representing the bridge should be stored in this folder. 

They will be used in the software when called.  

(4) FDD Control: This text file can be changed depending on the bridge. This file 

is used for the identification of modal parameters using the frequency domain 

decomposition method. 

(5) Sys: This text file includes the type of sensors e.g. accelerometers, 

displacement sensors. 

(6) Geometry: This text file includes the information of the geometry of the bridge. 

It is used for the animation purpose. 
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10.2  Description of Usage of Modules 

 

The instructions for using the modules listed in the previous section are given below: 

1.i. Open Bridge File: This module allows user to switch between different bridges 

and the associated window is shown in Figure10.1.2. 

1.ii. Exit SHM: This is to exit the program 

2.i. Convert Format: This module allows user to convert binary data to txt data. As 

shown in Figure 10.2.1, the folder where the binary data are saved can be chosen.  

After selecting the data, one shall click the “convert” button. There is an option of 

selecting more than one data files.  There are two options for the data conversion: 

manual and automatic. The latter can be used when more than one file is chosen. All 

the converted data files are saved in the TXTDATA folder. 

 

Figure 10.2.1 Data Format Conversion Window 

 

2.ii. Display Signal: This module allows user to see the measurement data. By 

clicking the “Open Data File” button, one can select a data set from the TXTDATA 

folder. Furthermore, Channel Number is to selected.  By clicking the “Show” button, 

one can view the time history of the stored data, as demonstrated in Figure 10.2.2. 
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Figure 10.2.2 Time History Display Window 

 

3.i. Combine Files: Several files collected from the bridge can be connected one after 

another to obtain a longer data file. As shown in Figure 10.2.3 several data can be 

selected and then click the “Combine” button to save the combined file as a new data 

file. 

 

 

Figure 10.2.3 Data Combination Window 

 

3.ii. FDD Analysis: In this module the FDD analysis can be performed manually by 

selecting a particular data file to analyze or automatically by analyzing all the data 

files in the folder. One can choose the number of data points for FFT analysis, as 

shown in Figure 10.2.4. 
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Figure 10.2.4 FDD Analysis Window 

 

4.i. Testing: In this module, stiffness correction coefficients of the bridge structure 

are identified based on the neural network method (presented in Chapter 6).  The 

identified coefficient values are shown in Figure 10.2.5.  The neural network in the 

software should be pre-trained to established mapping between the modal parameters 

and the stiffness correction coefficient.  

 

 

Figure 10.2.5 Neural Network Analysis Window 

 

5.i. Modal Parameters: In this module the identified modal values can be animated.  

As shown in Figure 10.2.6 for the Jamboree Road Overcrossing, there are four 

vertical and two transverse modes. Different dates can be chosen using the arrows 
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next to “Jamboree Modal Parameters”. Different modes can be selected using the 

arrows next to “Mode No”. 

 

 

Figure 10.2.6 Animation Window 

 

6.i. Location Map: Location of the bridge is stored under the bridge information.  

Figure 10.2.7 shows the location of the Jamboree Road Overcrossing as an example. 

 

 

Figure 10.2.7 Location Map Window 

 

6.ii. Sensor Configuration: Locations of the sensors are stored under the bridge 

information.  Figure 10.2.8 shows the sensor locations at the Jamboree Road 

Overcrossing as an example. 
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Figure 10.2.8 Sensor Configuration Window 

 

6.iii. File Naming Rules: Format of the names for the data files is explained in Figure 

10.2.9. 

 

 

Figure 10.2.9 File Naming Window 
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Chapter 11 

 

 CONCLUSIONS AND 

RECOMMENDED FUTURE WORK 

This project developed a number of methods for identifying element stiffness of 

bridge structures based on structural vibration measurement.  These methods were 

validated by uniquely large-scale shaking table tests of realistic bridge models.  Using 

these methods and a software package developed in this project, a stiffness baseline 

was established for each of the three highway bridges instrumented with 

accelerometer and strain sensor systems.  In addition, database for the baseline was 

developed based on measurement of traffic- and earthquake-induced vibration data 

over the last few years.   

 

 

 

 

 

 

 

 



 217

11.1 Conclusions  
 

The following conclusions can be made from this study: 

 

1. Identification of changes in structural component stiffness based on 

measurement of traffic- and/or seismic-induced vibration can be a powerful 

tool for assessing global structural condition in an automatic, real-time, 

objective and quantitative manner.  The use of element stiffness as the 

indicator of structural “health” condition enables not only quantification but 

also location of structural damage and deterioration.   

2. It is proposed to use traffic excitations to identify bridge superstructure 

stiffness.  For this purpose, a unique traffic excitation model was developed by 

incorporating video-based partial traffic monitoring information, which is 

more realistic than the conventional assumption of spatially-uncorrelated 

white noise. Bayesian updating and neural network methods were developed 

for identifying bridge structural element stiffness.  

3. The identified stiffness at the bridge superstructure and substructure (columns) 

of the three instrumented new bridges are up to 15% lower than their design 

values.  As a result, a stiffness baseline was updated from the design values for 

each of the bridges and it can be used for long-term monitoring.   

4. Up to 6% fluctuations in the identified stiffness was observed for one of the 

bridges over a four-year period.  This is considered due to change in 

environmental conditions such as temperature.  

5. Static and dynamic loading tests were conducted on one of the bridges using 

water trucks.  From the strain observation during the static load test, Up to 5% 

variations were observed in the identified modal frequencies between bumping 

and breaking tests.  This is considered due to the change in bridge vibration 

amplitudes. 



 218

6. For detection and evaluation of seismic damage in bridge columns, it is 

proposed to use earthquake input and bridge response to identify change in 

column stiffness.  In addition to the neural network method, an extended 

Kalman filter method was also developed in this project that can deal with 

nonlinear structural response and instantaneously identifying and quantifying 

change in column stiffness in real time during a damaging earthquake event.  

7. The effectiveness of the seismic damage evaluation methods was verified by a 

large-scale shaking table tests of multi-bent, multi-span bridge models.  

Locations and extent of stiffness degradations in the bridge columns were 

successfully identified based only on the seismic (acceleration) responses of 

the bridge, as the bridge was progressively damaged to different extents by 

seismic excitations.  The identified locations and extents of stiffness 

degradation were verified by the strain measurement and visual inspection.  

The shaking table tests conducted in this study represented the first effort in 

validating seismic damage evaluation methods using a realistic structural 

model subjected to realistic seismic damage 

 

 

• The novel fiber optic accelerometer an 
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11.2 Recommended Future Work 
 

This project has demonstrated the potential of using the sensor technology for long-

term and real-time structural health monitoring and post-event damage detection.  

Meanwhile, this study also identified key issues, as listed below,  that must be 

addressed before we can successfully implement the sensor and monitoring 

technology to majority of the Caltrans bridges for the purposes of structural 

maintenance and post-event damage assessment.  

1.  Methods must be developed to further translate the structural stiffness 

reduction identified based on vibration measurement into information 

regarding the remaining bridge load-carrying capacity.    

2. The baseline updating methods based on vibration measurement and stiffness 

identification developed in this study can also be applied to existing old 

bridges (that represent the majority of the Caltrans inventory) in the following 

two ways; one is for establishing the current baseline of the bridge for its 

future damage detection and deterioration assessment, and the other is for 

assessing the ongoing “health” if a database of similar types of bridges exist 

for the comparison purposes.  Obviously the later requires additional effort to 

monitor and study different types of bridges and establish a long-term 

database. 

3. This study focused on concrete box-girder bridges that represent the majority 

of the Caltrans highway bridges.  The applicability of the methods developed 

in this study to special long-span bridges, such as the Vincent Thomas Bridge, 

should be investigated in the future.    
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