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i

Routing of Battery Electric Heavy-Duty Trucks for 
Drayage Operations

EXECUTIVE SUMMARY
California has a long history of reducing GHG and NOx emissions. To meet the aggressive GHG 
reduction targets, California has been working on reducing truck emissions by accelerating the 
adoption of zero-emission trucks. One major area where zero-emission vehicles (ZEVs) may be 
employed is in drayage operations because of the disproportionate emission share in the 
transport sector. With the development of truck manufacturers, battery electric heavy-duty 
trucks (BEHDT) are available on the market, which provides an alternative option other than 
diesel heavy-duty trucks (DHDTs).

However, existing studies related to ZEVs mainly focused on light-duty vehicles. Limited 
research attention has been paid to the applications of BEHDTs in drayage operations. This 
research fills the gap and examines the potential to gradually adopt BEHDTs. We study different 
mixtures of diesel trucks and BEHDTs under various scenarios from 2022 to 2030 based on the 
best available estimations of developments in the battery industry.

We first formulate the mixed fleet drayage routing problem as a non-linear mixed integer 
programming problem. Followed by the model linearization and variable elimination, the model 
can be solved using commercial optimization solvers. However, the model cannot be solved 
efficiently when the problem size increases. Therefore, we develop a modified adaptive large 
neighborhood search heuristic to improve computational performance.

The potential of substituting BEHDTs for DHDTs in daily drayage operations is investigated in 
this study. We simulate scenarios with different BEHDT shares in the operating fleet to explore 
the impact of employing BEHDTs for 2022, 2025, and 2030. The results indicate that, currently, 
BEHDTs are not practical as substitutes for DHDTs due to their range limits. In order to meet the 
demand with a large percentage of BEHDTs in the truck fleet, the number of trucks need to 
increase by 47.2%. However, as BEHDT performance improves, in 2025 and 2030, the fleet size 
only increases by 3% in order to reach the maximum BEHDT share in the fleet. This makes 
BEHDTs a potential alternative solution for daily drayage operations since substituting BEHDTs 
for DHDTs in the fleet can lead to a reduction of over 50% in CO2 emissions and 90% in NOx 
emissions, as long as there is sufficient charging infrastructure outside the depot.
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1. Introduction 
In the last decade, globalization and urbanization have significantly increased the size of the 
international trade market. Global trade reached $28.5 trillion in 2021 and kept growing in the 
first two quarters of 2022 [1]. With a conservative estimation of 2.6 annual growth, the global 
heavy-duty truck (HDT) fleet size will exceed 64 million by 2050 [2]. The demand for 
transportation accounted for 7.7 percent of the GDP in 2020, and the transport sector 
accounted for 27 percent of greenhouse gases (GHG) and 56 percent of NOx, among which 
trucks generated 22 percent of GHGs and 32 percent of NOx [3]. Much of this consists of 
container shipping, which is used for 90 percent of the commodities in the United States [4].

California established GHG reduction goals in 2006, the only state to have done so to date. It 
enacted AB 32 and set a goal of reducing GHG emissions below the 1990 level by 2020, cutting 
them by 30 percent. Later, California enacted SB 32 to further reduce GHG emissions by 
another 10 percent by 2030. The law does not state specific approaches or requirements for 
reaching the GHG reduction goal, but a more efficient freight movement system is a clear 
avenue for consideration, given its disproportionate GHG share in the transport sector.

One of the most promising directions for reducing GHG emissions in the trucking industry is 
adopting zero-emission trucks in freight operations. Burke and Sinha investigated the zero- 
emission HDT markets [5]. Their report indicated that although both hydrogen fuel cells and 
batteries can be used as alternative fueling options, battery electric heavy-duty trucks (BEHDTs) 
are the only zero-emission HDTs currently available on the market, while hydrogen cells are still 
in the testing stage. Thus, this project focuses on BEHDTs as the substitute for traditional diesel 
heavy duty trucks (DHDTs).

We further focus on drayage service, a short-haul pickup and delivery service for transporting 
freight among ports, warehouses, and other facilities. The drayage operation problem is a 
special case for the capacitated pickup and delivery problems with all trucks having the same 
capacity (single container) since an HDT can carry one empty or loaded container or drive 
without a container.

The project is built on an earlier work by Giuliano et al. [6]. They developed an optimization 
model and tested it using real-world data collected from the Ports of Los Angeles and Long 
Beach. However, they simplified truck trips by assuming trips must start and end at the port 
and may only have one or two stops outside the port. In addition, they assumed that the port 
was the only charging location available. Figure 1 shows the two types of trips in their work.
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Figure 1. Two restricted routing patterns

However, charging stations can also be considered outside the port to improve the BEHDTs’ 
routing potentials. Figure 2 is a possible one-day route for a BEHDT. The BEDHT starts at the 
depot. It first conducts a few pickups and deliveries (demand satisfaction trips). As the battery 
level goes down, the BEDHT visits charging station C (charging trip) and then continues its 
pickup and delivery. By the end of the day, the truck goes back to the depot.

Figure 2. A more realistic BEHDT route

The major contributions of this study are as follows:

1) We consider charging locations outside the depot with non-linear charging times for 
BEHDTs.

2) We consider load-dependent energy consumptions to simulate a more realistic scenario 
for BEHDTs.

3) We propose an adaptive large neighborhood search (ALNS) algorithm to solve real- 
world size problems.

The rest of the report is structured as follows. In Section 2, a literature review of routing for 
drayage operations is provided. A mixed-integer programming (MIP) model is presented in 
Section 3, including linearizing the MIP, and introducing additional cuts to improve the solving 
time. In Section 4, a modified ALNS is presented to efficiently solve the proposed problem. In 
Section 5, the experimental results of our approaches are presented. We test our approach on
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both randomly generated small-size datasets and practical-size datasets from the Ports of Los 
Angeles and Long Beach. Section 6 offers conclusions and implications for future research.
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2. Literature Review 
The drayage routing problem is a variation of the pickup and delivery problem (PDP) with all 
vehicles’ capacity equal to one. The goal is to minimize the cost of regional freight movements. 
Prior research on drayage services has typically used the multi-traveling salesperson problem 
(m-TSP) formulations [7–11]. Most of the earlier work focused on minimizing the travel distance 
for freight pickup and delivery. Jula et al. proposed an exact method for small-size problems 
with dynamic programming and a genetic algorithm for large-size problems [7]. Zhang et al. 
formulated the m-TSP with multi-depots [10]. They developed a reactive tabu search to solve 
the model and solved small-scale problems optimally. Instead of purely minimizing travel 
distance for daily drayage operations, Zhang et al. extended their model by considering trucks 
as a limited resource [11]. The model was solved by a window partition method inspired by 
Wang and Regan [9].

Due to globalization and economic prosperity, freight movements have been increasing during 
the past decades, leading to social issues associated with air pollution, especially in GHG 
emissions, NOx, and particulates. Erdoğan and Miller-Hooks introduced the green vehicle 
routing problem (GVRP) to the literature to address the need to consider emissions while 
optimizing vehicle routes [12]. They formulated GVRP as a MIP and solved the problem with a 
modified saving algorithm and a heuristic to improve the initial solution.

Lin et al. conducted a comprehensive survey of GVRPs [13]. They indicated that GVRP should 
consider heterogeneous fleets instead of identical vehicles. Behnke and Kirschstein formulated 
the GVRP with heterogeneous fleets. Instead of searching for the shortest path, they calculate 
the emission-minimal path for each vehicle class [14]. Koyuncu and Yavuz proposed two GVRP 
formulations with node- and arc-duplicating forms [15]. They compared both models’ 
computational performance under various refueling policies, mixed fleets, and charging 
locations. Another variation of the mixed fleet vehicle routing problem is considering a 
heterogeneous driving range which was introduced by Juan et al. [16]. A more recent study on 
the multi-range VRP by Eskandarpour et al. [17] separated the objective function into monetary 
costs and environmental impacts. They applied a large neighborhood search to solve their 
optimization model. Bruglieri et al. investigated the GVRP with capacitated fuel stations with 
constant refueling time [18].

Asghari and Mirzapour Al-e-hashem summarized the most recent studies of GVRP [19]. One of 
the future directions was to consider various energy consumption rates for electric battery 
vehicles. As a greener substitute for DHDTs, researchers extended the GVRP by considering 
battery powered trucks. Elangovan et al. analyzed the GHG emissions for diesel and electric 
light-duty trucks [20]. The results showed that electric light-duty trucks emitted about 30 
percent less GHGs and consumed 66 percent less energy than diesel light-duty trucks.

Unlike commercial pickup and delivery service with small packages and commodities, drayage 
operations are containerized. The HDTs’ driving range depends on the carrying loads, and 
BEHDTs are particularly sensitive, ranging from 70 miles to 100 miles. Based on payload, 
Giuliano et al. interviewed BEDHT drivers and found that range limitations significantly curtail



5

the tasks they can undertake [6]. This suggests the need for charge planning to employ BEHDTs 
in drayage operations.

The electric vehicle routing problem (EVRP), an extension of the VRP that considers the limited 
driving range for electric vehicles and charging stations, is an extensively studied problem. Lin 
et al. presented a general EVRP formulation that minimized fleet size, travel time, and energy 
costs [21]. Pelletier et al. extended the EVRP into the stochastic world with uncertain energy 
consumption [22]. They formulated the problem as a robust optimization problem and 
developed a large neighborhood search heuristic to solve it. Because electric vehicles usually 
have strict limits on working time with a relatively long re-charging time, electric vehicle drivers 
tend to visit charging stations as few times as possible. As a result, full recharging policies are 
commonly accepted in the literature [23–26].

Felipe et al. considered heterogeneous charging facilities for electric vehicles [27]. Recent EVRP 
studies have considered the possibility of battery swapping [28–30], but the high cost and large 
capacity of the batteries for BEHDTs make it difficult to perform in practice. In this study, we 
use a concave piecewise-linear function to calculate charging times for BEHDTs, since 
researchers have widely used piecewise linear approximations as the charging function [31–33].

Most EVRPs cannot be solved optimally since VRP itself has been known to be NP-hard. Exact 
methods such as branch-and-cut [34], branch-and-price [24], and the MIP-based reduction 
procedure [35] can solve small-scale problems optimally. However, for large instances, an 
optimal solution cannot be obtained within a reasonable amount of computational time.
Therefore, most of the studies in the literature have used heuristics to solve their models. Tabu 
search is a class of local search methods that have been used in different variations of VRPs.
The most successful variation is adaptive large neighborhood search proposed by Ropke and 
Pisinger [36], which studies show is one of the most effective metaheuristics for solving vehicle 
routing problems [37–40]. In this study, we propose a modified Tabu search to efficiently solve 
our mathematical formulation.
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3. Mixed Fleet Drayage Routing Problem 
In this section, we first describe the mixed fleet drayage routing problem (MFDRP) and 
formulate the problem as a MIP model. Since the formulated MIP model contains a few non- 
linear constraints, model linearization is also presented in this section, followed by model 
preprocessing with variable eliminations.

3.1 Problem Formulation 
We use an arc-based formulation for the MFDRP. In this report, we consider two types of 
trucks. A set � represents available DHDTs and a set � represents all the BEHDTs. Unlike a 
DHDT, which has a range of hundreds of miles per refill, under the current battery technology, a 
BEHDT has a more limited range between charging and the range depends on the loading state 
of the truck. Therefore, we assume only BEHDTs need to be charged during working hours. In 
addition, all the trucks start and end at the truck depot.

The problem is defined on a directed graph � = (�, �) with a vertex set � = {0,1, … , �, � + 
1, … , � + �, � + � + 1} and an arc set � = {(�, �)|� ≠ � ��� �, � ∈ �}. In addition, both the 
vertices 0 and � + � + 1 represent the truck departure depot and arrival depot, respectively,
although in reality both can represent the same physical location. � = {1, … , �} is the customer 
location set and � = {� + 1, … , � + �} is the location set of charging stations. A sample 
network is given in Figure 3.

Figure 3. A sample network

Each location � (� ∈ �) is associated with a quadruple {��, �� , ��, ��̅ } where �� ∈ {−1,0,1} 
represents the loading state and �� = 1(−1) means a pickup (drop-off) of a container at 
location �, and �� = 0 means no pickup or drop-off at location � (e.g., only charging occurs at 
location �); �� ∈ {0, �� , ��} represents the load weight where �� is the weight for an empty 
container and �� is the weight for a loaded container; �� represents the service time; and binary
indicator ��̅ represents whether a BEHDT can be charged at location �. To simplify the model, we
assume that a truck can only conduct one of the following three tasks at each non-depot
location: pickup, drop-off, or charging. However, the modeling framework allows for multiple 
tasks at the same location by copying the node. In this way, only a single task is applied at each
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�

�

�

�

�,�

�,�

node. Binary variable �� = 1 if and only if arc (�, �) is traveled by a DHDT � ∈ �; binary 
variable �� = 1 if and only if arc (�, �) is traveled by a BEHDT � ∈ �. Due to the range limitation 
on BEHDTs, we introduce binary variable �� to determine if truck � recharges at location � and 
non-negative variable �� to keep track of truck �’s battery level upon arrival at location �. Non- 
negative variable �� represents the arrival time of truck � (� ∈ � ∪ �) at location �. Since 
BEHDTs have disparate power consumption rates under different loading states, we introduce a 
default battery consumption rate �, a load-dependent consumption rate �′, and a variable �� 
which represents the container loading states at location � for truck �. Figure 4 provides battery 
consumption rates for BEHDT under different load states.

Figure 4. Battery consumption rates under different states

The notation used in the report is as follows: 

Sets
�  The set of all the trucks
�  The set of DHDTs, � ∈ �
� The set of BEHDTs, � ∈ �
� The set of locations, � = {0,1, … , � + � + 1}
� The set of customers, � = {1, … , �}
� The set of charging stations, � = {� + 1, … , � + �}
� The set of arcs in the network
Ω  The set of emissions, Ω = {CO2, NOx}, with set index �

Parameters
� The default hourly battery consumption rate
�′ The load dependent hourly battery consumption rate
��,� Travel time on arc (�, �)
��,� Distance of arc (�, �)
��  Loading state at location �
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0

0

1

1

�

�

�

�

�

�

�,�

�

0

�� Load weight at location �
��  Service time at location �

��̅ Charging station indicator for location �
�� The daily DHDT employment cost
�� The daily BEHDT employment cost
�� The DHDT fuel cost per mile
�� The BEHDT charging cost per mile
�� The Emission cost of DHDT for pollutant �
�� The Emission cost of BEHDT for pollutant �
� The maximum working time for truck drivers

Variables
�� Binary variable for a truck � traveling on arc (�, �), � ∈ �
�� Arrival time at location � for truck �, � ∈ �
��  Truck �’s container loading state when leaving location � , � ∈ �
�� Binary indicator for BEHDT � recharging at location �, � ∈ �
�� Battery level for BEHDT � upon arriving at location �, � ∈ �

The MFDRP can be formulated as,

m in ( � �  ∑ ∑ �� +  � � ∑ ∑ �� ) +  ( ∑ � �,� ((� �  +  ∑ � �  ) ∑ �� + (�� + ∑ �� ) ∑ �� ) )  (1)
�� ,�� 0 0,� 0 0,� 1 � �,� 1 � �,�

�,�  �,� �∈� �∈� �∈� �∈� (�,�)∈� �∈Ω �∈� �∈Ω �∈�

Subject to

�
�,� = 1 ∀� ∈ � (2)

�∈� �∈�

�
�,�

�∈�

�
�,�

�∈�

= 0 ∀� ∈ � ∪ �, � ∈ � (3)

��  = �� = 0 ∀� ∈ � ∪ �, � ∈ � (4)
�,0 �+�+1,�

� 
0,�

�∈�∪�

�
�,�+�+1

�∈�∪�

∀� ∈ � (5)

�� ≤ ��̅ ∀� ∈ �, � ∈ � (6)
��  ((1 − ��)�� + �� − ��,�(� + �′��)) ≤ �� ∀� ∈ �\{0}, � ∈ �, � ∈ � (7)

�,� � � � � �

��

�
�

�� (�� + �� + ��,�) ≤ �� ∀�, � ∈ �, � ∈ � (10)
�,� � �

∑∑�

∑� − ∑�

∑  � = ∑ �

�
= 1 ∀� ∈ � (8)
≥ 0 ∀� ∈ �, � ∈ � (9)
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0

0

�

�

�,� �

�� (�� + �� ⋅ �(�� ) + �� + ��,�) ≤ �� ∀�, � ∈ �, � ∈ � (11)
�,� � � � �

�� − �� ≤ � ∀� ∈ � (12)
�+1 0

�� = 0 ∀� ∈ � (13)
�� (�� + �� ⋅ wj) ≤ �� ∀� ∈ �, � ∈ �\{0}, � ∈ � (14)

�,� � �

�� �� = 0 ∀� ∈ �, � ∈ �, �� > 0 (15)

�� = 0 ∀� ∈ � (16)

�� ≥ 0 ∀� ∈ �, � ∈ � (17)
�
�,�

�
�

�� ∈ � ∀� ∈ �, � ∈ � (20)

The objective function (1) is to minimize the cost for one day’s drayage operation, including 
daily truck employment costs, fuel costs, and emission costs. Constraints (2 − 5) are the 
traditional vehicle routing constraints such as demand satisfaction constraints and flow 
conservation constraints. Constraint (6) indicates that charging only occurs at locations with 
charging stations. Constraint (7) defines the remaining battery level of a BEHDT upon arrival at 
location �. The constraint only becomes effective only when truck � travels on arc (�, �). When
��

�, � = 1, the remaining battery for truck � after traveling arc (�, �) can be represented as 
follows:

�� − ��,�(� + �′��) �� �� = 0
�� = { �

� � (21)� 1 − ��,�(� + �′��) �� �� = 1
� �

The battery consumption rate on arc (�, �) is determined by the container load state of truck � 
when leaving location �. Constraint (8) states that all the BEHDTs are fully charged in the truck 
depot at the beginning of the day. Constraint (9) ensures every BEHDT can arrive at the next 
destination with a non-negative battery level. Constraints (10 − 11) keep track of the arrival 
time for all the trucks as well as eliminating sub-tours. In constraint (11), � is the charging time 
function, which depends on the battery level of BEHDT � upon arrival at location �. In this 
report, we assume a piece-wise linear charging function in our experiments. Constraints
(12 − 13) bound the working time for all the trucks. Constraints (14 − 17) are the truck 
capacity constraints. The rest of the constraints are domain constraints.

3.2 Model Linearization 
The proposed MFDRP has a few non-linear constraints (7), (10), (11), (14) and (15). All these 
constraints share one property: the non-linear terms have at most one non-negative 
continuous variable multiplied by multiple binary variables. We linearize our model using the 
following approach. 

�

�

∈ {0,1} ∀(�, �) ∈ �, � ∈ � (18)

∈ {0,1} ∀� ∈ �, � ∈ � (19)



10

�=1

�,�

�,�

�′∈� � ∈�∪{�+1}

Model Linearization: The expression � = � ∑� ��, where � is a non-negative variable with a
maximum value of � and �� are binary variables, can be linearized by introducing the following 
constraints:

� ≤ ��� ∀� ∈ {1,2, … , �} (22)
� ≤ � (23)

�

� ≥ � + � (−� + ∑ ��) (24)
�=1

� ≥ 0 (25)

3.3 Preprocess of the MFDRP Model 
To improve the formulation of the proposed model, we first eliminate variables based on 
feasibility rules. Then we strengthen the formulation by eliminating symmetric solutions. 

3.3.1 Variable Eliminations 

The first elimination rule is based on the truck capacity. A location � can have three types of 
freight loads: loaded container, empty container, and no container. By constraints (14 − 17), 
once a truck picks up a container, it cannot pick up other containers before dropping off the 
current load. It is worth noting that BEHDTs can visit charging stations at any time. Therefore, 
variable �� and arc (�, �) are eliminated if the following condition holds:

�� > 0 �� �� > 0
{
�� < 0 �� �� < 0

∀� ∈ � (26)

The second elimination rule is based on BEHDT range. Variable �� is eliminated if arc (�, �)
satisfies the following conditions.

��� ��′,�� + ��,� ∗ (� + �′) + min ��,�′� > 1 �� �� = 1
�′∈� �′∈�∪{�+1}
��� ��′,�� + ��,�(� + �′�) + min ��,�′� > 1 �� �� = �
�′∈� �′∈�∪{�+1} ∀� ∈ �, � ∈ � (27)
��� ��′,� (� + �′) + ��,�� + min ��,�′� > 1 �� �� = −1
�′∈� ′ �′∈�∪{�+1}

{  ��� ��′,�(� + � �) + ��,�� + min
′ ��,�′� > 1 �� �� = −�

These four conditions are the cases that a BEHDT traveling on arc (�, �) connects two customer 
locations. Taking the first condition as an example, the first term represents the minimum 
battery consumption on prior arc (�′, �). The second term is the battery consumption on arc 
(�, �). The last term is the minimum battery consumption that allows the BEHDT to reach the
nearest charging station or depot. These three trips cannot exceed the battery limit. Otherwise, 
arc (�, �) is not a valid arc for a BEHDT in the model.
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3.3.2 Eliminating Symmetry 

Although two different types of trucks are employed in the model, trucks in the same truck set 
are homogeneous, meaning all the DHDTs are the same and all the BEHDTs are the same. In this 
case, multiple solutions can be made identical by switching the numbering of the trucks. To 
avoid the symmetry of the solutions, we label DHDTs and BEHDTs using numerical values.
DHDTs are numbered from one to |�|, followed by BEHDTs from |�| + 1 to |�| + |�|. 
Additional constraints (28 − 29) are introduced to force trucks with smaller labels to be 
employed first.

� 
0,�

�∈�

� 
0,�

�∈�

�−1 
0,�

�∈�

�−1 
0,�

�∈�

∀� ∈ {2,3, … , |�|} (28)

∀� ∈ {|�| + 2, |�| + 3, … , |�| + |�|} (29)

∑�

∑�

≤ ∑�

≤ ∑�
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4. Solution Approach 
Although the proposed MFDRP can be solved optimally by commercial solvers, it takes hours to 
even find feasible solutions for problems of practical size. Therefore, we propose a modified 
ALNS heuristic to solve the problem. There are two main steps to solve the MFDRP with ALNS,
(1) find an initial feasible solution, and (2) explore neighborhoods of the current solution and 
move towards a better solution.

4.1 Initial Solution Construction 
In the proposed model, containers may be empty or loaded. Before constructing truck routes, 
we first match supply and demand based on container types. The formal definition of a 
matched supply and demand (also referred as task) is the following: 

τ = (�, �, �) 

where � is a supply node, � is a demand node, and � is a binary indicator for the demand type 
(i.e., � = 0 for empty container demand and � = 1 for loaded container demand).

There are many ways to match supply and demand. For example, the distance between a 
supply node � and a demand node � can be considered as the preferences for pair (�, �), which 
turns the matching problem into a stable marriage problem and can be solved by the Gale- 
Shapley algorithm [41]. Once all the customer nodes have been matched, we store every 
matched task � into a task list (Τ) and use the following algorithm for initial solution 
construction.

Algorithm 1: Initial Solution Construction

Step 0. � = {}, � = 0.
Step 1. � = � + 1
Step 2. Introduce a new truck � with its schedule �� = [] and initialize the truck location ι = 0
Step 3. Search for the nearest ���� s.t.

�∗ = (�∗, �∗, �∗) = arg min
(�,�,�)∈Τ

�ι,o

Step 4. If working time for truck � with �∗ ≤ �: 
Append �∗ to ��

Remove �∗ from Τ
Update truck location ι = �∗

Else:
Append truck � to �
Go to Step 1

Step 5. If Τ is not empty, go to Step 3, else STOP.
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For initial solution construction, only DHDTs are used in the system. Algorithm 1 is a greedy 
algorithm for solving a bin-packing problem. In this algorithm, trucks are considered as 
capacitated bins with limited working time. Each ordered list �� holds the truck schedule for 
truck �. Every time a new truck is introduced into the system, it will search for the nearest 
remaining �∗ in Τ based on the truck’s last location. If the current truck can finish �∗ and return 
to the depot within �, we append �∗ to the ordered list and remove �∗ from the task list Τ. 
Otherwise, the truck is added to the diesel truck set � and a new truck � + 1 is introduced to 
the system to take the remaining tasks. The algorithm stops when all tasks are assigned.

4.2 Modified ALNS 
The ALNS is adapted from Dessouky et al. [38]. The modified ALNS in our study considers truck 
substituting between DHDTs and BEHDTs. In addition, we introduce charging station insertion 
and task re-match operations in our ALNS. The framework of our ALNS is given in Figure 5.

Figure 5. Solution framework for our ALNS

4.2.1 Substitute Truck Types 

After running Algorithm 1, only DHDT routes are generated. Figure 6 shows a truck route in the 
initial solution. 

 

Figure 6. A truck route in the initial solution 
 

When we substitute a BEHDT for a DHDT, charging station insertions are necessary to ensure 
non-negative battery levels for the BEHDT. Figure 7 gives two types of charging station
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insertions, within and between task insertions. In addition, because the charging time for 
BEHDTs is non-negligible, we cut off tasks that exceed the working time limit and add them 
back into the task list Τ. On the other hand, when substituting a BEHDT for a DHDT, we only 
need to eliminate all the charging stations along the route.

Figure 7. Two types of charging insertions

4.2.2 Re-match Tasks 

Initially, all the tasks are generated in a greedy manner only considering the distance between 
supply and demand nodes. It is easy to see such a matching might lead to a sub-optimal 
solution and trap the model solution in a local minima. Therefore, it is necessary to re-match 
supply and demand nodes along the procedure. In each iteration, trucks that have less than � 
tasks will be removed from the truck sets. These tasks will be added back to the task list Τ. 
Before inserting these unassigned tasks to trucks, in each iteration with a certain probability �, 
we randomly remove � tasks from all the trucks and add them back to the task list Τ and 
rematch these tasks.

4.2.3 Insert Tasks into Trucks 

At this point, if the task list Τ is not empty, we need to insert tasks into existing trucks or 
employ additional trucks to ensure demand satisfaction. 

4.2.4 Optimize Routes 

For each DHDT, we minimize its travel distance with working time limit constraints. For each 
BEHDT, additional battery constraints are considered when determining its routes. Although 
finding the best route for every truck is a TSP which is NP-hard, the best route can be found fast

�
when each truck can have at most � tasks. In practice, a truck usually serves less than twenty

�

customers in daily drayage operations.

4.2.5 Stopping Criteria 

The heuristic terminates when the following two conditions hold: 

1) The maximum number of iterations (Ψ) is reached. 
2) The improvement between successive iterations is not greater than Δ. 
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4.2.6 Complete ALNS Heuristic 

The solution to the problem is a collection of truck routes for DHDTs and BEHDTs which are 
stored in � and �, respectively. Two functions are used in the ALNS (1) ���� is a function that 
calculates the system costs based on the truck routes in � and �, and (2) � is a function that 
calculates travel distances for any truck �. The complete ALNS heuristic is given in Algorithm 2.

Algorithm 2: Modified ALNS
��−��

Step 0. Set � = 0, � = {}, � =  0 0 ,��−��+∑�∈Ω(��−�� )
1 1 � �

Step 1. �∗ = (�, �), Κ∗ = ����(�, �), �∗ = 1, 
Step 2. For truck � in �:

If �(�) > �:
Remove truck � from �
Insert charging stations into �� with greedy insertion 
If working time for truck � > �:

Cut off the tasks that exceed � and add these tasks to Τ
Add � to �

Else if truck � has less than � tasks: 
Add all the tasks in truck � to Τ 
Remove truck � from �

Step 3. For truck � in �:
If �(�) ≤ �:

Remove truck � from �
Remove charging stations from ��

Add � to �
Step 4. With probability �, randomly remove � tasks from all trucks to Τ and re-match OD pairs 

for all � ∈ Τ based on the demand type
Step 5. While Τ is not empty:

Select a �′ from Τ
If �′ can be inserted into any active truck � ∈ � ∪ �: 

Insert �′ into ��

Else:
Assign �′ to a new truck

Step 6. Optimize routes for all active trucks
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Step 7. If ����(�, �) ≤ Κ∗:
�∗ = (�, �)
Κ∗ = ����(�, �)
�∗ = �

Step 8. � = � + 1
Step 9. If � − �∗ ≥ Δ or � = Ψ, STOP; otherwise go to Step 2.

The algorithm starts with the solution generated by Algorithm 1. In Step 0, we initialize a few 
parameters, where � is the iteration counter, � is the set for BEHDTs, and � is the travel 
distance threshold for substituting a DHDT to a BEDHT. In Step 1, we introduce �∗ to store the 
best solution, Κ∗ to store the minimum system cost, and �∗ to store the iteration that finds the 
best solution. Step 2 and Step 3 are the truck type substituting process. If a DHDT travels more 
than the threshold �, we substitute the DHDT to a BEHDT, perform charging station insertions, 
and cut off tasks that exceed the working time limit �. If a DHDT travels less than � and has 
fewer than � tasks, it is removed from the system and its tasks are added back to the task list Τ. 
On the other hand, if a BEHDT travels less than �, it is substituted back to a DHDT by removing 
all charging stations on its route. Step 4 is the task re-matching process. In each iteration, there 
is a probability � of performing a re-match for the remaining tasks in Τ. Every time a re-match
happens, additional � tasks are added back to Τ from the truck routes to better explore the 
solution space and escape from a local minima. In Step 5, we try to insert the remaining tasks in 
Τ into existing trucks. Every time a task cannot be inserted into existing trucks, it is assigned to 
a new truck. Step 6 is the route optimization procedure, which finds the best route for each 
individual truck. In Step 7, the best solution is updated if the system costs in the current 
iteration is lower than the minimum system costs. We then update the iteration number and 
check the stopping criteria.
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5. Numerical Experiments 
In this section, we present the numerical results of small-size and practical-size instances. Most 
of the parameters are taken from Giuliano et al.’s study [42]. We first run the modified ALNS on 
small instances, which can also be solved by a standard commercial optimization solver Gurobi 
using the MFDRP formulation. The optimal solutions obtained from the Gurobi solver are also 
considered as benchmark cases to show the effectiveness of the proposed ALNS heuristic. Then, 
we use the modified ALNS to solve practical size problems to explore the potential of employing 
BEHDTs in drayage operations in years 2022, 2025, and 2030.

All the numerical experiments are conducted on a square grid map with randomly generated 
customer and charging station nodes on the map. The depot is located at the center of the 
map. All the trucks start and end at the depot. DHDTs are assumed to be able to finish one-day 
operations without refueling and BEHDTs are fully charged at the beginning of the day. Once a 
BEHDT arrives at a charging station, it cannot leave the station until it is fully charged. We use a 
two-stage charging model in this study. The battery has a faster (slow) charging speed �1 (�2) 
before (after) the battery level threshold, as shown in Figure 8. We assume all the trucks are 
driving on well-maintained roads with an average speed of 40 mph. The service time for all 
customer nodes is half an hour.

Figure 8. Charging curve

All simulated experiments are solved on a computer with an Intel i7-12800H CPU of 4.8 GHz 
and a RAM of 64 GB. All the scripts are programmed in Python 3.8. The MFDRP model is solved 
by Gurobi 9.5.2 with Python API.

5.1 Experiments with Small-size Instances 
As a non-linear MIP model, the MFDRP cannot be efficiently solved by state-of-the-art 
commercial optimization solvers when the problem size is large. However, for very small 
instances, the model can be solved optimally within 4 CPU minutes. A 50 miles by 50 miles grid 
map is generated with 8-12 customer nodes and 2 charging station nodes. The location of the
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customer and charging station nodes are randomly generated on the map. All the small cases 
are solved with Gurobi 9.5.2 as well as the modified ALNS. We record the best solution found 
within 2 CPU hours for all the experiments. The parameters that are used in this section can be 
found in the Appendix.

Table 1. Small instances results

Name
Gurobi Solver ALNS

Obj LB Gap Time (s) Obj Gap Imp Time (s)
4F4E2C1 836.74 836.74 0.00% 209.0 836.74 0.00% 0.00% 3.2
4F4E2C2 822.81 822.81 0.00% 74.9 828.93 0.74% -0.74% 2.9
4F4E2C3 818.16 818.16 0.00% 148.0 818.16 0.00% 0.00% 3.3
4F4E2C4 860.54 860.47 0.01% 88.8 867.18 0.77% -0.77% 2.8
4F4E2C5 770.68 770.68 0.00% 216.3 779.63 1.15% -1.16% 1.8
Avg 821.79 821.77 0.00% 147.4 826.13 0.53% -0.54% 2.8
6F4E2C1 770.71 243.43 68.41% 7200.0 770.71 68.41% 0.00% 8.3
6F4E2C2 835.80 270.85 67.59% 7200.0 873.01 68.98% -4.45% 4.3
6F4E2C3 831.95 303.65 63.50% 7200.0 872.57 65.20% -4.88% 3.8
6F4E2C4 816.84 238.85 70.76% 7200.0 835.44 71.41% -2.28% 3.2
6F4E2C5 776.94 230.31 70.36% 7200.0 770.30 70.10% 0.85% 4.6
Avg 806.45 257.42 68.13% 7200.0 824.40 68.82% -2.15% 4.84
8F4E2C1 1115.21 223.09 80.00% 7200.0 830.39 73.13% 25.54% 7.8
8F4E2C2 1206.20 305.24 74.69% 7200.0 1251.97 75.62% -3.79% 10.2
8F4E2C3 1168.02 318.66 72.72% 7200.0 867.79 63.28% 25.70% 4.6
8F4E2C4 1248.14 332.73 73.34% 7200.0 1299.55 74.40% -4.12% 9.2
8F4E2C5 1266.20 339.48 73.19% 7200.0 1283.10 73.54% -1.33% 5.7
Avg 1200.76 303.84 74.79% 7200.0 1106.56 71.99% 8.40% 7.5

Table 1 shows the numerical results for the small instances. In total, we conducted 15 instances 
with three different settings and each setting has five randomly generated instances. The 
instance name shows the types of nodes on the map. For example, instance 8F4E2C1 means it 
is the first instance with eight loaded container demand nodes, four empty container demand 
nodes, and two charging station nodes. The first group of columns is the numerical results 
retrieved directly from the Gurobi solver. Within the group, the first column (Obj) shows the 
objective function value of the best solution found; the second column (LB) is the best lower 
bound; the third column (Gap) is the optimality gap between the best objective function value 
and the best lower bound; the fourth column (Time) is the solving time in seconds for the 
Gurobi solver. The second group of columns is the results from our ALNS. Since ALNS does not 
provide any lower bounds in the solving procedure, we compare the results with the solver 
solution and calculate improvements (Imp) compared to the best solution from the Gurobi 
solver. As shown in Table 1, all the cases under 4F4E2C can be solved optimally within a few 
hundred seconds by the Gurobi solver, while ALNS can also solve these cases nearly optimally 
within a few seconds. However, when the problem size increases, the solver performance drops 
down significantly. None of them can be solved optimally within two CPU hours. Although ALNS
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consistently solves the problem in a matter of seconds and provides good quality solutions. In 
some instances, such as 6F4E2C5, 8F4E2C1, and 8F4E2C3, ALNS even outperforms the best 
solution from the solver.

5.2 Experiments with Practical-size Instances 
In this section, we conduct simulations to explore the potential of substituting DHDTs with 
BEHDTs from different aspects including the fleet size, travel distances, and emissions. In 
addition, three years (2022, 2025, and 2030) are considered in our experiments. For each target 
year, we considered three situations including (1) all trucks are DHDTs (Max-DHDTs), (2) nearly 
half of the trucks are BEHDTs (Mid-Point), and (3) all trucks are BEHDTs (Max-BEHDTs). In total, 
we have nine groups of experiments. The year 2022 with all DHDTs is considered as our base 
case. We modify parameters from Giuliano et al.’s work [42], which provides comprehensive 
information including daily employment costs, emission rates, and battery capacity 
improvements for both DHDTs and BEHDTs for years 2022, 2025 and 2030. Other parameters 
are listed in the Appendix.

Similar to Giuliano et al. [42], we study scenarios with daily demand for empty and loaded 
containers as 135 and 176 respectively. We randomly generate demand nodes on the map in 
each experiment and run five replications under each setting.

As seen in Figure 9, in 2022, to satisfy the daily demand, the Max-DHDTs scenario requires 71.6 
trucks on average. As the share of BEHDTs increases, the fleet size increases significantly. To 
reach the maximum BEHDT share in the truck fleet, there is a 47.2% increase in the fleet size, 
and the average fleet size becomes 105.4. Additional trucks are needed due to the range 
limitations and extra charging time. The fleet size for reaching maximum BEHDT share reduces 
sharply over the target years as battery technology improves. In 2025 and 2030, the fleet sizes 
both increased by 3.4% to reach the maximum BEHDT share in the fleet.

Figure 9. Avg. number of HDTs required for each target year

Figure 10 provides the truck miles for daily demand satisfaction. In 2022, the truck miles 
increase as the BEHDT share increases. These extra truck miles are caused by detours for 
charging. In 2025, we still can see a slightly increase in the truck miles under different scenarios. 
However, in 2030, the truck miles are very similar under different scenarios. As battery
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technology significantly improves in future years, there is less need to charge during the 
workday. Thus, there is less need to take detours for charging during working time.

Figure 10. Avg. truck miles required for each target year

Table 2 shows the emissions reductions relative to the Max-DHDT scenario for each target year. 
In all target years, the Max-BEHDT scenario has the most emissions savings. In 2022, over 50% 
reductions in CO2 emissions and 93% reductions in NOx can be achieved by employing BEHDTs 
in the fleet. In 2025 and 2030, with fewer BEHDT charging detours, CO2 emissions can be 
reduced by an additional 10%. In addition, NOx emissions can be reduced to zero when only 
using BEHDTs in drayage operations.

Table 2. Net daily emissions savings, relative to Max-DHDTs

Pollutant Year
Mid-point Max-BEHDTs

Net saving (kg) % of saving Net saving (kg) % of saving
CO2 2022 3531.63 14.5% 12375.98 50.9%

2025 8655.44 40.2% 13249.23 61.5%
2030 7254.03 37.6% 11864.52 61.4%

NOX 2022 4.90 31.1% 14.78 93.6%
2025 5.07 64.0% 7.94 100.0%
2030 4.92 62.0% 7.94 100.0%
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6. Conclusion 
In this project, we examine the potential of employing BEHDTs in daily drayage operations as a 
substitute for DHDTs. We consider multiple charging locations on the map with non-linear 
charging time for BEHDTs. We first formulate the MFDRP as a non-linear MIP and then improve 
the formulation with linearization and variable elimination. Then, a modified ALNS is proposed 
to solve the problem in a more efficient way. The effectiveness of the proposed ALNS is shown 
in small-size instances. We conduct randomized experiments based on data from the Port of 
Los Angeles and Long Beach. The results indicate that: 

a) Employing BEHDTs as substitutes for DHDTs will increase the fleet size under the same 
level of demand, especially given today’s battery technology. To reach the maximum 
BEHDT share in the fleet, the fleet size increases by 47.2%, 3.4%, and 3.4% in 2022, 
2025, and 2030, respectively.

b) Additional truck miles caused by employing BEHDTs decrease as battery technology 
improves. In 2022, there is a 33% increase in truck miles when the maximum BEHDT 
share in the fleet is reached. These additional truck miles are caused by BEHDT charging 
detours. With improved battery capacity, BEHDTs are able to travel longer per charge, 
requiring fewer detours for charging.

c) Significant emission reductions can be achieved by employing BEHDTs as substitutes for 
DHDTs. In 2022, up to 50.9% of CO2 emissions can be reduced by employing BEHDTs. In 
2025 and 2030, an additional 10% of CO2 emissions can be saved with fewer truck miles. 
Since BEHDTs do not emit NOx, zero NOx emissions can be achieved in drayage 
operations when only using BEHDTs to transport freight.

There are several limitations to the study. First, we assume all the HDTs drive at a constant 
speed. In the real world, traffic conditions are dynamic. One future direction could be 
incorporating dynamic traffic network states into the model. For example, traffic simulation 
models can be introduced to better approximate the transportation network states and traffic 
flow conditions. Second, we do not consider capital costs for infrastructure construction and 
assume sufficient charging infrastructure outside the depot. One extension of this study could 
also determine the best allocations for charging facilities. Third, in this study, we conducted 
experiments on randomly generated datasets to simulate the drayage system. Future work can 
collect data from logistics companies in the San Pedro Bay area and test our approach on more 
realistic datasets. Finally, more research can be done to investigate the latest commercially 
available BEHDT ranges and charging times using higher power electric charging systems.
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8. Data Summary 
Products of Research
The primary date source was publicly available from the report “Developing Markets for Zero- 
Emission Vehicles in Goods Movement” (Giuliano et al., 2018), which was supported by the 
National Center for Sustainable Transportation. Also, randomly generated data sets were used 
in this study.

Data Format and Content
All research products will be available online in digital form. Manuscript will appear in a 
common document-viewing format, such as PDF, and supplemental materials such as tables 
and numerical data will be in a tabular format such as Microsoft Excel spreadsheets, CSV files.

Data Access and Sharing
The data can be found at Dataverse: https://doi.org/10.7910/DVN/ZWMXVK

Reuse and Redistribution
USC's policy is to encourage, wherever appropriate, research data to be shared with the public 
through internet access. This public access will be regulated by the university to protect privacy 
and confidentiality concerns, as well to respect any proprietary or intellectual property rights. 
Administrators will consult with the university's legal office to address any concerns on a case- 
by-case basis, if necessary. Terms of use will include requirements of attribution along with 
disclaimers of liability in connection with any use or distribution of the research data, which 
may be conditioned under some circumstances.

https://doi.org/10.7910/DVN/ZWMXVK
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9. Appendix 
Table A1. Parameters for small-size instances

��0 300
��

0 360
��1 0.58
��

1 0.38
����2 0.1
��

��� 0.5
��

��2 0
��

��� 0
� 8
Ψ 400
Δ 200
� 0.3
� 4
� 2
�1 0.8
�2 0.2
� 80

Table A2. Parameters for practical-size instances

Year 2022 2025 2030
��0 150 150 150
��

0 380 250 180
��1 1.36 1.26 1.16
��

1 0.49 0.50 0.47
��

��2 0.1501 0.1329 0.1191
��

��� 0.0010 0.0005 0.0005
��

��2 0.0506 0.0475 0.0444
��

��� 0 0 0
Ψ 1000
Δ 400
� 0.3
� 4
� 2
� 8
�1 0.8
�2 0.2
� 80
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