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Centrally Coordinated Schedules and Routes of Airport 
Shuttles with LAX Terminals as Application Area 

EXECUTIVE SUMMARY  

A critical problem facing US airports as they respond to growth in services and operations is the 
limitation of curbside parking for shuttles to pick up and drop off passengers during peak hours. 
Today, shuttle companies and airport operations work independently without any schedule 
coordination, leading to frequent congestion near the pick-up and drop-off points that 
negatively affects passenger traffic leading to unnecessary idling, delays and congestion with 
negative impact on air quality. Accurate prediction of arrival times at the pick-up and drop off 
points depends on traffic conditions which are time varying as well as on the schedules of other 
shuttles sharing the same curbside spots. Without any form of central coordination, a single 
shuttle company cannot accurately develop a schedule that maintains a high quality of service 
at a reduced operational cost. This problem is exacerbated by existing and growing shuttle 
services provided by the airports themselves, centralized car rental facilities, and public 
transportation hubs. Furthermore, the transition of conventional shuttles to electric ones and 
the possibility of autonomous shuttles add additional complexities that necessitate the use of a 
centralized shuttle coordination system for optimum performance.  

In this project, a CENtrally COordinated Shuttle system (CENCOS) is designed and evaluated by 
considering the recent development in theory, software and information technologies. The 
CENCOS system formulation is based on the combination of job assignment formulation and co-
simulation optimization approach that combines real time traffic simulators with a route 
optimization algorithm in a feedback configuration. The system simulator captures the 
nonlinear impact of traffic loads on traffic flow which is then used in the optimization of the 
routes. Based on the more accurate predictions of traffic stated generated by the incorporated 
traffic simulator, the CENCOS system plans the schedules and routes of all shuttle vehicles in 
order to minimize curb congestion at the pick-up and drop-off points, reduce operational cost 
and improve quality of service. In the sight of emerging technology trends including burgeoning 
electrification and automation, the CENCOS system is designed to include multiple types of 
shuttles, such as electric shuttles and autonomous shuttles. The use of mixed fleet of shuttles 
powered by diesel and electricity, introduces additional constraints and cost criteria to be 
considered, since battery electric shuttles have a higher capital cost, shorter range, and longer 
refueling time than diesel shuttles. The benefits of the CENCOS co-simulation optimization 
system for a mixed shuttle routing system are compared with alternative shuttle management 
of schedules and routes without optimal centralized coordination. The results show that the 
proposed CENCOS system with the employed co-simulation optimization method provides 
significant reduction in total cost. Another result shows the total cost without including 
charging time and emissions decreases as the penetration of electric shuttles increases in the 
overall fleet. The CENCOS system is demonstrated in a real road network combining a ‘digital 
twin’ of the Los Angeles World Airport (LAWA) traffic network and a macroscopic network 
covering the road network from LAX to LA downtown. The CENCOS system can be applied to a 



 

 ii 

wide range of applications involving pick-up and drop-off points and shuttles in airports and 
other places. 

The main outcomes of the project are listed as follows: 

• The shuttles spend less waiting and traveling time in the airport area by participating in 
the proposed CENCOS system. 

• The benefits generated by the CENCOS system depend on the background traffic and 
increase with heavy traffic. 

• The CENCOS system shows savings in total cost of about 30% when compared with 
current shuttle management systems where each shuttle company operates individually 
without any coordination. 

• The total cost of shuttle assignment from the CENCOS system decreases as the number 
of electric vehicles increases. 

• The emissions go down drastically as the number of electric vehicles increases in the 
fleet. 

We have to emphasize that the research performed is a preliminary step toward a coordinated 
shuttle scheduling and routing system using load balancing techniques and by no means 
captures the full complexity of shuttle transport. Some of the assumptions made need to be 
validated with experiments and some of the scenarios tested are rather simple when compared 
with the complexity of shuttle operations. This research however sets the foundations of the 
concept of centrally coordinated shuttle management system by solving some challenging 
problems whose solutions point to the direction for future research for eventual 
implementation. 
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1. Introduction 

A critical problem facing US airports as they respond to growth in services and operations is the 
limitation of curbside parking for shuttles to pick up and drop off passengers. Today, shuttle 
companies and airport operations work independently without any schedule coordination, 
leading to frequent congestion near the pick-up and drop off points that negatively affects 
passenger traffic leading to unnecessary idling, delays and congestion with negative impact on 
air quality and quality of service to passengers. Accurate prediction of arrival times at the pick-
up and drop off points depends on traffic conditions and the schedules of other shuttles sharing 
the same curbside spots. Without any form of central coordination, a single shuttle company 
cannot accurately develop a schedule that maintains a high quality of service and reduce 
operational cost. This problem is exacerbated by existing and growing shuttle services provided 
by the airports themselves to support “remote curb”, centralized car rental facilities, and public 
transportation hubs—particularly as more of these services are transitioned to autonomous 
vehicles. A CENtrally COordinated Shuttle system (CENCOS) is essential to improve the 
operations of the current system and support emerging technology trends including burgeoning 
electrification and automation and reduce operational costs. Research has shown that lowering 
operating costs and improving local air quality are the most compelling reasons for fleets to 
adopt electric vehicles [1], [2]. Further, fleets may also see reduced maintenance costs and a 
boost in public esteem [3]. Vehicle automation is a continuing trend in vehicle technologies in 
an effort to improve safety, passenger comfort and remove the randomness of human drivers 
leading to smoother traffic flows with expected energy savings. In the case of most airport 
shuttles, the routes are fixed and the challenging task of learning of the environment on new 
routes faced by automated vehicles does not apply. This simplifies the safety issues involved 
and makes automated shuttles quite feasible without costly infrastructure changes. An 
additional consideration for electrification is battery life and how it is affected by congestion as 
well as charging times and charging location. As some of the shuttles become automated 
operating on fixed routes the issue of safety comes up and issues such as safety gaps, collision 
avoidance, speeds, lane changes etc., add more constraints that the CENCOS needs to take into 
account. While some shuttles are in close vicinity of the airport and use the same daily routes, 
shuttles from longer distances may have the option of alternative routes which could be 
optimized.  

Currently there is no existing system which can generate schedules and possibly routes for all 
shuttles in a way that it meets their operational objectives and service while minimizing 
congestion at the curbside. To centrally coordinate the shuttles in the traffic hubs such as LAX 
airport, it is important to notice that the traffic flow in the airport terminal area is not 
independent of the road network outside the airport area. To address the congestion of 
shuttles in the terminal area, we need to intelligently manage the schedule and route of each 
shuttle from their departure node, through stops and to the terminal nodes. The traditional bus 
scheduling and planning problem is divided into four aspects: timetabling, vehicle scheduling, 
crew scheduling and crew rostering [4]. The input to the schedule planning problem contains 
routes or lines to operate and how frequently. The average travel times between stops are also 
known parameters. The timetabling problem focuses on determining the decision of pairing 
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routes or lines with a certain time, which is then called a trip. The vehicle scheduling problem 
then decides the assignment of shuttles or buses to each trip to make sure that every trip is 
assigned to exactly one vehicle. The solution of vehicle scheduling problem results in a set of 
vehicle blocks, where each vehicle block defines the trips paired to the vehicle. For each trip in 
a vehicle block, the crew scheduling problem then decides the assignment of one working 
period of one crew to a trip or a subsection of a trip. Crew rostering deals with the rosters 
based on crew duties. According to author’s knowledge, the synchronization of bus timetabling 
problem that decides the departure times of trips of a whole day to maximize the 
synchronization of multiple events in order to smooth the passenger transfer process, is initially 
developed by Ceder et al. [5]. The recent trend of research on synchronization of bus 
timetabling can be found in [6]–[13]. Ibarra-Rojas and Rios-Solis developed dynamic bus 
timetabling techniques featured with oriented synchronization and evenly spaced departures 
[6]–[8]. Wu et al. studied a stochastic version of synchronization bus timetabling problem, 
where bus travel times are stochastic, and slack time is added into the timetable to mitigate the 
randomness of travel times so that the rate of transfer failures is reduced [9], [10]. Kang et al. 
developed a complex model to reduce the number of cases that passengers miss the 
connecting trains [11]. In [12], an event-driven model is developed for the train schedule to 
minimize the total travel time of all passengers and the energy consumption of trains.  

Research on vehicle routing is very rich and many optimization tools have been developed over 
the years which are very useful in addressing some of the issues mentioned above. The Vehicle 
Routing Problem (VRP) formulation was first introduced by Dantzig and Ramser [14], as a 
generalization of the Traveling Salesman Problem (TSP) presented by Flood [15]. Since then, 
there is a significant amount of research on this topic which can be divided into 4 main 
categories. First, in static and deterministic problems, all inputs are known beforehand and 
vehicle routes do not change once they are in execution. This classical problem has been 
extensively studied in the literature, and we refer the interested reader to the recent reviews of 
exact and approximate methods by Baldacci et al. [16], Cordeau et al. [17], Laporte [18], [19], 
and Toth and Vigo [20]. Second, static and stochastic problems are characterized by inputs 
partially known as random variables, whose realizations are only revealed during the execution 
of the routes. Additionally, it is assumed that routes are selected a priori and only minor 
changes are allowed afterwards. Uncertainty may affect any of the input data like stochastic 
times where either service or travel times are modeled by random variables [21], [22]; and 
stochastic demands [23]–[27]. Third dynamic and deterministic problems have part or all of the 
inputs as unknown and appear dynamically during the design or execution of the routes. For 
these problems, vehicle routes are redefined in an ongoing fashion, requiring technological 
support for real-time communication between the vehicles and the decision maker (e.g., mobile 
phones and global positioning systems). Fourth, dynamic and stochastic problems have part or 
all of their inputs unknown and appear dynamically during the execution of the routes, but in 
contrast with the latter category, exploitable stochastic knowledge is available on the 
dynamically revealed information. As before, the vehicle routes can be redefined in an ongoing 
fashion with the help of technological support. For a comprehensive review of both the 
deterministic and the stochastic dynamic VRP, we refer the interested reader to [23]–[27]. 
Additional work on shortest route problems which cover the four categories mentioned can be 
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found in [28]–[36] which also include work on multimodal routing and planning. With respect to 
electric vehicle routing, Ambrose and Jaller [37] examined the result of electric drayage trucks 
at the Port of Los Angeles and assessed emissions reductions with increased electrification of 
port truck operations. Nan et al. presented a mathematical programming model and solution 
method for path-constrained traffic assignment problem for electric vehicles in congested 
networks [38]. Bahrami et al. proposed a complementary equilibrium model for electric 
vehicles without violating driving range constraints [39]. Based on the assumption of large 
adoption of electric vehicles, Faridimehr et al. [40] proposed a two-stage stochastic 
programming model to determine the optimal network of charging stations for a community as 
well as the charging decision for each electric vehicle in this community. For a more detailed 
topic for electric vehicle traffic assignment, Yao et al. [41] compared electric vehicle’s energy 
consumption rate on different road types from the floating car data collected from the road 
networks in Beijing.  

Despite research in the area of scheduling and routing for shuttles and buses, there are still 
many issues that need to be addressed and new techniques need to be developed in order to 
make full use of the emerging electric vehicle technologies in a way that benefit the overall 
system and the environment. The complexity of the traffic network is immense due to the non-
homogeneous dynamics of different vehicle classes at the vehicle level and nonlinear behavior 
at the traffic flow level. Mathematical models used by most TAP schemes cannot possibly 
capture the complexity of the real system in order to achieve the best possible outcome 
especially due to the added constraints of electric vehicles. The development of accurate 
mathematical models to describe traffic characteristics has always been a challenge and is 
becoming more of a challenge if electric vehicles are included in the model. The availability of 
fast computers and advanced software tools however, allows the development of traffic 
simulation models which can run in real time to provide the information and predicted states of 
the traffic network to choose routes that are more likely to be close to optimality than those 
based on simplified mathematical models. The challenge is how these simulation models can be 
integrated with optimization tools to generate more realistic outcomes. In past work [36], [42], 
we considered the use of real time traffic simulators as part of a centrally coordinated 
multimodal freight load balancing system and showed the significance of traffic simulators in 
planning freight routes to achieve a good balance of freight loads across the road and rail 
network. In [43], we explored the use of co-simulation optimization method to solve mixed 
freight truck routing problem. In this project we extended the work of [36], [42], [43] to 
incorporate a job assignment problem onto the load balancing layer in order to address the 
congestion around shuttle stop nodes. Considering that electric shuttles will be entering the 
market due to efforts to reduce emissions and most companies will be operating mixed fleets 
of shuttles, routing mixed fleets of shuttles in a coordinated manner that will have additional 
benefits to the environment and costs is an important research problem this project focused 
on.  

The report is organized as follows. Section 2 deals with the main project content. Respectively 
Section 2.1 presents the digital twin of traffic network in an area that includes LAX all the way 
to downtown Los Angeles. Section 2.2 presents the main core of CENCOS system: its 
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formulation and algorithm. Section 2.3 presents the key elements for the optimization 
algorithm as well as the emission model to evaluate vehicle emissions. Section 2.4 presents the 
simulation results that demonstrate the consistency of performance. Finally, conclusions are 
presented in Section 3 and appendices can be found in section 4. 

2. Project Contents 

2.1 LAX and digital twin 

In this section, we configured and updated the LAX-LA downtown digital twin of traffic flow 
network that is developed in a previous project supported by LAX. The overall view of LAX-LA 
downtown road network is shown in Figure 1. The digital twin of traffic flow of this network is 
built using a microscopic traffic simulator, which details the interactions and modeling of 
dynamics of individual vehicles. However, during the test of the digital twin, we noticed that the 
computation time is exponentially large if the whole network is simulated using a microscopic 
traffic simulator. Considering the advantages of reducing computation time by aggregating 
traffic status from a macroscopic traffic simulator, we decided to combine the advantages of 
micro- and macroscopic traffic simulator and make a hybrid digital twin which uses a 
microscopic traffic simulator to model the traffic at the LAX area and a macroscopic traffic 
simulator to model the traffic at areas less important and complex than LAX. The microscopic 
LAX digital twin is shown in Figure 2 and the macroscopic complementary digital twin is shown 
in Figure 3. 

 

Figure 1. LAX-LA downtown digital twin of traffic network 
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Figure 2. Microscopic digital twin of traffic flow network in the LAX area 

 

Figure 3. Macroscopic complementary digital twin of traffic flow network which connects 
with LAX traffic 

For the microscopic LAX digital twin, the following components are configured: road geometry 
and characteristics, dynamic components such as traffic lights and signal control (.rbc file for 
signal control in the LAX terminal area), road sensors, background traffic flow. For the 
macroscopic complementary digital twin, we configured road geometry and used traffic flow 
data from sources such as Freeway Performance Measurement System (PeMS) of Caltrans, Los 
Angeles Department of Transportation (LADOT) and Southern California Association of 
Governments (SCAG). The shuttle demand data are collected from the shuttle company 
websites. Shuttle and bus services include FlyAway Bus Service, Scheduled buses (Antelope 
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Valley Airport Express, Central Coast Shuttle, Mickey's Space Ship Shuttle, etc.), buses to LAX 
City Bus Center and hotel shuttles. 

The energy consumption is usually estimated using a set of static vehicle features, such as 
length, shape, et al. However, the shuttles are working under various conditions and their 
energy consumption characteristics vary under different working conditions. To achieve an 
accurate estimation of these characteristics, we used a method that combines mapping the 
driving speed to working mode and mapping the working mode to energy consumption rate 
developed by us in a previous project. In this method, the analytical model of typical diesel and 
electric engines are implemented and tested with driving cycles. Driving cycles are files that 
document the speed of a specific vehicle interval by interval under some driving mode. The 
analytic model [44] is used to describe the diesel engine and [45] to describe the electric engine 
of heavy-duty vehicles. More details can be found in [43].  

2.2 CENtrally COordinated Shuttle system (CENCOS) 

2.2.1 Optimization model 

In this subsection, we developed a centrally coordinated airport shuttle system referred to as 
CENCOS that minimizes the overall cost by reducing congestion at airport curbside and 
improving quality of service using an innovative co-simulation optimization technique based on 
a digital twin of the traffic at the airport road network. Our approach involves a two-layer 
formulation. The upper layer referred to as the scheduling layer and the lower level layer 
referred to as the load balancing layer. Specifically, the upper layer is in charge of scheduling 
the order of shuttles arriving at the pick-up/drop-off stops around the network based on 
constraints such as traveling time, energy cost, charging time for electric shuttles, etc. This layer 
is formulated based on a job assignment problem with complex constraint specifications on 
charging behavior for each electric shuttle. Based on the scheduling of shuttles across the road 
network, a traffic load balancing assignment is used to assign the shuttle demand on the 
transportation system in order to minimize the travel time and energy consumption cost. This 
layer is formulated based on a Traffic Assignment Problem (TAP). The general framework of the 
optimization model can be described as follows: a central coordinator receives from individual 
users (shuttle companies) their shuttle origin/destination (O/D) demand with time windows 
and information about the mixed fleet of diesel and electric shuttles. Then the CENCOS system 
generates a scheduling plan by deciding the order of shuttles to be served at each stop based 
on the network link cost and desired service constraints. The network link cost consists of the 
travel time and energy consumption cost. Then the order of shuttles entering and leaving each 
stop is input into the load balancing assignment layer, which generates routes for each shuttle 
that minimize an overall system cost. The impact of the loads on each link is taken into account 
to achieve load balancing across the road network. The road network traffic states such as 
travel time and traffic flow on each road link are generated by a traffic simulator. The dynamic 
traffic states are then used in the overall co-simulation optimization procedure to intelligently 
calculate the direction and step size of the algorithm in each iteration. The traffic states of each 
segment are then fed back to the scheduling layer for the calculation of travel time and energy 
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consumption. The travel time is also important in calculating battery life in the case of electric 
shuttles. The framework of CENCOS is summarized in Figure 4. 

 

Figure 4. Framework of CENCOS formulation 

2.2.1.1 Scheduling Formulation 

We consider a road network represented by a directed graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the node 
set and 𝐸 is the link set. There are two sets of shuttle operation jobs that need to be fulfilled: 
short-distance job set 𝐽 and long-distance job set 𝑈. The route of each operation job 𝑗 is 
predetermined, while the routes for long-distance jobs need to be decided by the shuttle 

coordination system. The route can be represented by a sequence of ordered nodes 𝑀𝑗 =

{𝑗(1), 𝑗(2), … , 𝑗(𝑚𝑗)}, where 𝑚𝑗 is the total number of stops in operation 𝑗. The shuttle 

coordination system also takes charge of scheduling, so that for each operation job 𝑗 ∈ 𝐽 ∪ 𝑈, 

the shuttle arrives at the airport within a time window [𝑇𝑙
𝑗
, 𝑇𝑢

𝑗
], where 𝑇𝑙

𝑗
/𝑇𝑢

𝑗
 is the 

earliest/latest arrival time at the destination node 𝑗(𝑚𝑗). By taking into account the type of 
shuttles, the route that shuttles serving long-distance should take, the timing along the route as 
well as charging behavior if the shuttle is electric, the total cost which is a function of travel 
time and energy consumption can be minimized. In the following, we list the notation, variables 
and parameters used in the mathematical formulation of the problem: 

• 𝑡𝑖,𝑗: The arrival time of operation job 𝑗 at node 𝑖; 

• ℎ𝑗 = 1 if the operation job j is fulfilled by an electric shuttle; ℎ𝑗 = 0 , otherwise; 

• 𝑥𝑖,𝑗,𝑘 = 1 if the operation job 𝑗 precedes another operation job 𝑘 at node 𝑖; 𝑥𝑖,𝑗,𝑘 =  0, 

otherwise; 

• 𝑏̂𝑗
𝑖: The battery status when the shuttle for operation job 𝑗 arrives at node 𝑖 in units of 

kWh; 

• 𝑏̅𝑗
𝑖: The battery status when the shuttle for operation job 𝑗 leaves node 𝑖 in unit of kWh; 

• 𝜂: value of time; 

• 𝜀𝑢,𝑣
𝑒 : electric energy consumption from node 𝑢 to node 𝑣 in unit of $; 

• 𝜀𝑢,𝑣
𝑑 : diesel energy consumption from node 𝑢 to node 𝑣 in unit of $; 

• 𝑝𝑖,𝑗: processing time at node 𝑖 for operation job 𝑗; 

• 𝑑𝑢,𝑣: the travel time from node 𝑢 to node 𝑣; 

• 𝜁: electric energy charging rate in unit of kW; 
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• 𝜂: value of time; 

• 𝑊, 𝑊1, 𝑊2: large numbers  

Given the above notation we formulate the problem as follows:  

𝑀𝑖𝑛𝑡,𝑏̂,𝑏̅,𝑥,ℎ,𝑀𝑗:𝑗∈𝑈  ∑(𝜂(𝑡𝑗(𝑚𝑗),𝑗 − 𝑡𝑗(1),𝑗) + ∑ (𝜀𝑗(𝑟),𝑗(𝑟+1)
𝑒 ℎ𝑗 + 𝜀𝑗(𝑟),𝑗(𝑟+1)

𝑑 (1 − ℎ𝑗)

𝑟∈𝑀𝑗\{𝑚𝑗}

))

𝑗∈𝐽

 

Subject to, 

 𝑊(1 − ℎ𝑗) + 𝑡𝑗(𝑟+1),𝑗 ≥ 𝑡𝑗(𝑟),𝑗 + 𝑝𝑗(𝑟),𝑗 + 𝑑𝑗(𝑟),𝑗(𝑟+1) + 
𝑏̂𝑗

𝑗(𝑟)
−𝑏̅𝑗

𝑗(𝑟)

𝜁
, ∀𝑗 ∈ 𝐽, 𝑟 ∈ 𝑀𝑗 (1) 

 𝑊(1 − ℎ𝑗) + 𝑏̅𝑗(𝑟+1) ≥ 𝑏̂𝑗(𝑟) + 𝜀𝑗(𝑟),𝑗(𝑟+1)
𝑒 , ∀𝑗 ∈ 𝐽, 𝑟 ∈ 𝑀𝑗 (2) 

 𝑊(2 − 𝑥𝑖,𝑗,𝑘 − ℎ𝑗) + 𝑡𝑖,𝑘 ≥ 𝑡𝑖,𝑗 + 𝑝𝑖,𝑗 + 
𝑏̂𝑗

𝑖−𝑏̅𝑗
𝑖

𝜁
, ∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘, 𝑖 ∈ 𝑉 (3) 

 𝑊1(1 − 𝑥𝑖,𝑗,𝑘)+𝑊2ℎ𝑗 + 𝑡𝑖,𝑘 ≥ 𝑡𝑖,𝑗 + 𝑝𝑖,𝑗 , ∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘, 𝑖 ∈ 𝑉 (4) 

 𝑊1𝑥𝑖,𝑗,𝑘+𝑊2(1 − ℎ𝑗) + 𝑡𝑖,𝑗 ≥ 𝑡𝑖,𝑘 + 𝑝𝑖,𝑘+  
𝑏̂𝑘

𝑖 −𝑏̅𝑘
𝑖

𝜁
, ∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘, 𝑖 ∈ 𝑉 (5) 

 𝑊(𝑥𝑖,𝑗,𝑘 + ℎ𝑗) + 𝑡𝑖,𝑗 ≥ 𝑡𝑖,𝑘 + 𝑝𝑖,𝑘 ,   ∀𝑗, 𝑘 ∈ 𝐽, 𝑗 ≠ 𝑘, 𝑖 ∈ 𝑉 (6) 

 𝑇𝑙
𝑗

≤ 𝑡𝑗(𝑚𝑗),𝑗 ≤ 𝑇𝑢
𝑗
, ∀𝑗 ∈ 𝐽 (7) 

 𝑡𝑖,𝑗 , 𝑏̂𝑗
𝑖 , 𝑏̅𝑗

𝑖 ≥ 0, 𝑥𝑖,𝑗,𝑘 , ℎ𝑗 ∈ {0,1}    ∀𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝐽 (8) 

The objective function aims to minimize the sum of the travel time cost and energy 
consumption cost of all operation jobs. The total travel time for operation job 𝑗 equals to the 
time duration from its first stop to the last stop. The energy cost equals to the energy 
consumed for each link along the route. Constraint (1) requires that for an operation job 𝑗, its 
arrival time at its (𝑟 + 1)st node should be at least greater than the time after traveling along 
link (𝑗(𝑟), 𝑗(𝑟 + 1)) and charging if it is fulfilled by an electric shuttle from its 𝑟th node. 
Constraint (2) states that if operation job 𝑗 is allocated to an electric shuttle, then the battery 
energy after leaving a stop should be enough for it to cover the distance to its next stop. 
Constraints (3)-(6) describe the conflicting relations of different operation jobs. Constraint (3) 
makes the following statement: if operation job j precedes operation job k at some stop 𝑖, and 
operation job is fulfilled by an electric shuttle, then the shuttle of operation job 𝑘 can arrive at 
stop 𝑖 only if operation job 𝑗 finishes all the processing and charging action. Constraint (4) 
describes the scenario when operation 𝑗 fulfilled by a regular (non-electric) shuttle precedes 
operation 𝑘. Constraint (5) describes the situation that operation 𝑗 does not precede operation 
𝑘 fulfilled by an electric shuttle at node 𝑖. Constraint (6) describes that operation 𝑗 does not 
precede operation 𝑘 fulfilled by a regular shuttle at node 𝑖. Constraint (7) declares the time 
window at destination node for each operation job. The solution for the scheduling problem 
provides a temporal assignment of shuttles across the whole road network detailing in the 
order of shuttles entering and leaving at each stop node as well as the energy being charged at 



 

 9 

each node. Note here, the travel time of each shuttle is updated by a traffic simulator, which is 
able to well capture the interactions between the shuttles and background traffic. The solution 
of the scheduling layer is then input into the load balancing assignment layer, where the 
solution is regarded as demand for the whole road network and needs optimal assignment 
arrangement spatially. 

2.2.1.2 Load Balancing Formulation 

Based on the spatially assignment of shuttle demand from the scheduling layer, the demand is 
then input into the load balancing layer to be assigned optimally spatially across the whole 
network. The formulation of load balancing layer can be described as follows: consider the road 
network to be a directed graph 𝐺(𝐸, 𝑉), where 𝐸 is the set of all links and 𝑉 is the set of all 
nodes. Among all the nodes, a subset of them are origin nodes, denoted as 𝑂, i.e., 𝑂 ⊂  𝑉. 
Another subset of nodes are destination nodes, denoted as 𝐷, i.e., 𝐷 ⊂  𝑉. For a certain pair of 
origin and destination nodes (𝑖, 𝑗), 𝑖 ∈  𝑂, 𝑗 ∈  𝐷, the demand volume is 𝑞𝑖,𝑗. All the shuttle 

types are included in a set 𝑈. To represent the distribution of shuttles, we use 𝑚𝑖
𝑢 as the 

number of total available shuttles of type 𝑢 at node 𝑖. To cope with the temporal dimension, we 
discretize the time horizon into |𝐾| time intervals and use 𝐾 as the set of all the time intervals. 
The following notation is used in the formulation to follow: 

• 𝑅𝑖,𝑗
𝑢 : The set of routes for shuttles of type 𝑢 from 𝑖 to 𝑗, 𝑖 ∈  𝑂, 𝑗 ∈  𝐷; 

• 𝑋𝑖,𝑗,𝑟,𝑘
𝑢 : The number of shuttles of type 𝑢 from 𝑖 to 𝑗, 𝑖 ∈  𝑂, 𝑗 ∈  𝐷, using route 𝑟 in route 

set 𝑅𝑖,𝑗
𝑢  with a departure time 𝑘; 

• 𝑆𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋): The average service cost per container fulfilled by a shuttle of type 𝑢 from 𝑖 

to 𝑗, 𝑖 ∈  𝑂, 𝑗 ∈  𝐷, using route 𝑟 in route set 𝑅𝑖,𝑗
𝑢  with a departure time 𝑘. 

Given the above notation we formulate the problem as follows: 

 𝑚𝑖𝑛𝑋   ∑ ∑ ∑ ∑ ∑ 𝑆𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋)𝑋𝑖,𝑗,𝑟,𝑘

𝑢
𝑟∈𝑅𝑖,𝑗

𝑢𝑢∈𝑈𝑗∈𝐷𝑖∈𝑂𝑘∈𝐾  (9) 

 ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑟,𝑘
𝑢

𝑟∈𝑅𝑖,𝑗
𝑢𝑢∈𝑈𝑘∈𝐾  =  𝑞𝑖,𝑗 , ∀ 𝑖 ∈  𝑂, 𝑗 ∈  𝐷 (10) 

 ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑖.𝑗
𝑢  𝑗∈ 𝐽𝑘∈𝐾 ≤  𝑚𝑖

𝑢, ∀ 𝑖 ∈  𝐼, 𝑢 ∈  𝑈 (11) 

 𝑋𝑖,𝑗,𝑟,𝑘
𝑢 ≥  0 (12) 

Equation (9) is the objective function, which aims to minimize the sum of the service cost of all 
the shuttle. 𝑆𝑖,𝑗,𝑟,𝑘

𝑢 (𝑋) is the unit service cost of transporting a load with a shuttle of type 𝑢 

using route 𝑟 from 𝑖 to 𝑗 at time 𝑘 given 𝑋. The cost 𝑆𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋) is given by: 

 𝑆𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋) =  𝐶𝑖,𝑗,𝑟,𝑘

𝑢 (𝑋) + 𝜂 𝑇𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋) (13) 

where 𝐶𝑖,𝑗,𝑟,𝑘
𝑢 (𝑋) is the cost of the consumed energy, 𝑇𝑖,𝑗,𝑟,𝑘

𝑢 (𝑋) is the travel time and 𝜂 is the 

value of time used in the scheduling layer. The energy and travel time cost depend on the 
dynamics of the traffic network. The dynamics of the traffic network can be expressed as 
nonlinear dynamic functions of all decision variables, denoted as 𝑋, and is discussed in the 
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following parts. In our case, the energy cost depends on the dynamics of the traffic network. 
More specifically, we formulate the energy cost coefficient of each shuttle type as a polynomial 
function of the speed of the road link, where the parameters of the function are estimated 
using regression over a set of testing data. Here we assume each shuttle is responsible for one 
demand, so that the total number of shuttles for an O/D pair is equal to the demand of the O/D 
pair, as shown in equation (10). Equation (11) represents the constraints on availability of a 
certain type of shuttle at each node. Equation (11) can also be used to formulate the 
distribution of available mixed shuttles over the road network at the beginning of the time 
horizon. 

The dynamics of a traffic network are highly nonlinear and exhibit the following temporal-
spatial relations: traffic flow dynamics in a link and between links. The dynamics in a link 
describe how the traffic flow moves from the upstream end of a link to the downstream end, 
while the dynamics between links describe how the traffic flow propagates across the traffic 
network. In most of the literature of vehicle routing, the complex dynamics of the traffic 
network are overly simplified and the dynamics between links are ignored. As a result, the 
calculated optimum routes may not be optimum in a real situation. In our approach, we 
introduce the following changes that make it more likely for a theoretical optimum to be closer 
to the one in practice:  

• Instead of using a simplified mathematical model to account for the complex traffic 
dynamics, we use a traffic simulation model in a co-simulation optimization approach. 
The simulation model provides a far more accurate description of the traffic dynamical 
characteristics to be used by the optimum route generator. 

• To efficiently apply the simulation model, we construct a service network layer as a 
connection between the optimizer and the simulation model. 

• To speed up the iterative algorithm process, we propose a way to intelligently choose 
the direction and step size at each iteration based on the knowledge of the marginal 
cost. 

In order to explain the proposed method, we first discuss the configuration of the service 
network and the changes it brings to the above formulation. To differentiate the notation 
between the service network and the road traffic network, we use the following terminologies: 

• Road network link: edge in the road network 

• Path: a sequence of concatenated road network links 

• Service segment: edge in the service network 

• Route: a sequence of concatenated service segments  
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A service network can be configured based on a traffic network in the following steps: 

• Collect a subset of nodes in the traffic network including all O/D nodes as well as the 
nodes necessary for the routing of shuttles to form the service node set 𝑁𝑆. These 
necessary nodes can be terminals, stops, charging stations and so on. 

• Construct a set of segments 𝐿 connecting nodes in 𝑁𝑆.  

The service network can be seen as an abstracted upper layer of the traffic network. An 
example of a road network with its associated service network is shown in Figure 5, where the 
bottom level is the road network and the upper level is the service network as an abstraction of 
the road network. The blue nodes in the service network are important nodes such as O/D 
nodes and intersections of freeways. Based on the service network nodes, the artificial 
segments are created to fully connect the service network. 

 

Figure 5. Service network example 

With the inclusion of the service network, the relations between routes and links can be divided 
into two parts: relations between routes and service segments and relations between service 
segments and traffic network links. The relations between routes and service segments are 
specified as follows: 

 ∑ ∑ ∑ ∑ ∑ 𝑋𝑖,𝑗,𝑟,𝑘
𝑢 𝛿𝑙,𝑟,𝜏,𝑘

𝑢
𝜏≤ 𝑘  𝑟∈ 𝑅𝑖,𝑗

𝑢𝑢∈ 𝑈𝑗∈ 𝐷𝑖∈ 𝑂 =  𝑥𝑙,𝑘
𝑢  (14) 

where 𝑙 ∈  𝐿, 𝑘 ∈  𝐾 and 𝛿𝑙,𝑟,𝜏,𝑘
𝑢  =  1 when the shuttle of type 𝑢 uses route 𝑟 with departure 

time 𝜏 passing through segment 𝑙 at time 𝑘, otherwise, 𝛿𝑙,𝑟,𝜏,𝑘
𝑢  =  0. As for the relations 



 

 12 

between the service segment and traffic network links, we denote as 𝑡𝑙,𝑘
𝑝  the travel time on 

path 𝑝 if a shuttle departs from the origin of segment 𝑙 at time 𝑘. Assume links constituting 
path 𝑝 to be 𝑒𝑝,1, 𝑒𝑝,2, … , 𝑒𝑝,𝑁𝑝

, where 𝑁𝑝 is the total number of links on path 𝑝. We define 𝜉𝑒,𝑘  

as the entering time at link 𝑒 of a shuttle with a departure time 𝑘 from the origin of that path. 
With 𝑤𝑒,𝑘  to be the travel time of link 𝑒 at time 𝑘, we now write the travel time of a path as 
follows: 

 𝑡𝑙,𝑘
𝑝  = ∑ 𝑤𝑒𝑝,𝑛𝑝

𝑁𝑝

𝑛𝑝 = 1 𝜉𝑘,𝑒𝑝,𝑛𝑝
 (15) 

 𝜉𝑘,𝑒𝑝,1
=  1 (16) 

 𝜉𝑘,𝑒𝑝,𝑛𝑝+1
= 𝜉𝑘,𝑒𝑝,𝑛𝑝

 +  𝑤𝑒𝑝,𝑛𝑝,𝜉𝑘,𝑒𝑝,𝑛𝑝
 (17) 

where 𝑛𝑝  =  1, … , 𝑁𝑝 − 1. To make the notation simpler, we let 𝑤̂𝑝,𝑛𝑝,𝑘 ≡  𝑤𝑒𝑝,𝑛𝑝,𝜉𝑘,𝑒𝑝,𝑛𝑝

 to 

denote the travel time of link 𝑒𝑝,𝑛𝑝
 on path 𝑝 with the path departure time being 𝜉𝑘,𝑒𝑝,𝑛𝑝

. Given 

the service segment volume 𝑥𝑙,𝑘
𝑢  and the path set of segment 𝑙, the vehicle dispatching problem 

in the traffic network can be expressed as follows: 

 min
𝑦

𝑇𝐶  = ∑ ∑ ∑ (𝑐𝑙,𝑘
𝑝,𝑢 + 𝜂 𝑡𝑙,𝑘

𝑝,𝑢)𝑝∈ 𝑃𝑙
 𝑦𝑙,𝑘

𝑝,𝑢 𝑙∈ 𝐿𝑘∈ 𝐾  (18) 

where 𝑇𝐶 stands for the total cost of the assignment with mixed shuttles, which is a combined 

value of energy consumption and travel time cost; 𝑐𝑙,𝑘
𝑝,𝑢is the energy consumption coefficient for 

shuttles of type 𝑢 passing through path 𝑝 of segment 𝑙 at time 𝑘; 𝑡𝑙,𝑘
𝑝,𝑢 is the travel time of the 

path 𝑝 in segment 𝑙 that departs at time 𝑘; 𝑦𝑙,𝑘
𝑝,𝑢 is the number of shuttles of type 𝑢 assigned to 

pass through path 𝑝 of segment 𝑙 at time 𝑘 and 𝜂 is the value of time as mentioned before. The 
total cost is the sum of the energy consumption and travel time cost of all the segments with 
respect to time. The objective is to find an assignment for the mixed shuttles with minimum 
total cost. The constraints are defined by equations (14)-(17) generated from the service 
network as well as the complex dynamics from the simulated traffic network. In our method, 
the nonlinear dynamics of the traffic flow network are represented by the real time traffic flow 
simulation model that generates the states of the network to be used in the optimization 
problem. Aside from equations (14)-(17), the following equations are used to represent the 
relation between variables from the service network and the simulated traffic network: 

 ∑ 𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈ 𝑃𝑙
 =  𝑥𝑙,𝑘

𝑢 , ∀ 𝑙 ∈  𝐿, 𝑘 ∈  𝐾 (19) 

 𝑦𝑙,𝑘
𝑝,𝑢

≥  0, ∀ 𝑙 ∈  𝐿, 𝑝 ∈  𝑃𝑙 , 𝑘 \𝑖𝑛 𝐾 (20) 

2.2.2 Optimization algorithm 

In this subsection, we discuss the optimization algorithm used to solve the problem formulated 
above. Figure 6 gives a general overview of the method. The scheduling optimization and load 
balancing optimization parts are responsible for the scheduling and load balancing layer 
respectively. These two layers together play a central role in the optimization procedure; in 
practice, it can be a central coordinator whose aim is to manage shuttles scheduling and routing 
to fulfill demands at minimum system cost. The inputs to the system are shuttle demands, 



 

 13 

details of time window for each stop, the distribution of electric shuttles, emission model and 
other predetermined parameters. Shuttle demands represent the shuttles that transfer loads 
from origin to destination nodes. These demands are specified with time window on each stop 
as well as the type of shuttle fulfilling it, diesel or electric. The characteristics include the 
physical (weight, length, frontal area, et al.), dynamics (max speed, acceleration, et al.) and 
energy consumption (the amount of energy consumed based on the dynamic states). Based on 
the energy consumption characteristics of diesel/electric shuttles, the cost coefficients on each 
segment of both types of shuttles are calculated under different traffic conditions. An emission 
model from National Renewal Energy Laboratory (NREL) is used to calculate the emissions. A 
real-time traffic simulator is used to capture the dynamical characteristics of traffic and provide 
traffic status such as travel times along the links and routes as well as estimates of the energy 
cost of diesel and electric shuttles depending on the simulated traffic flow. The information 
from the simulator is used by the service graph optimization component to update the marginal 
cost of each service segment, which is used to update the route cost and the traffic status for 
the scheduling optimization part. Based on the updated traffic status, the Gurobi optimizer 
reoptimizes the order of shuttles entering and leaving each stop and updates the input into the 
load balancing layer. Based on the shuttle order decision and simulated route cost, the route 
collection for each O/D pair is updated as well. Then given the updated route collection, the 
assignment of diesel/electric shuttle for each O/D pair is updated by solving an integer 
combinatorial programming problem using a properly selected efficient step size. The new 
assignment is then generated and passed to the next iteration.  

 

Figure 6. Framework of proposed method 

The traffic simulator uses two types of inputs: background traffic flow and assignment traffic 
flow. The background traffic flow is obtained from various sources, such as PeMS [46] and 
Google Maps [47]. The assignment traffic flow is generated by the optimizer. The co-simulation 
optimization procedure iterates in a feedback loop that involves the traffic simulator, the 
scheduling and load balancing optimization. Through this procedure, the assignment and traffic 
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flow states are sequentially updated until convergence is achieved. The difficulty in this 
procedure is calculating the marginal cost of each route, which is equal to the change in the 
total cost as a result of adding one unit of demand on that route. Since the total cost 𝑇𝐶 of 
equation (18) is complex, the marginal cost with respect to a route cannot be calculated 
directly. One way to calculate the marginal cost is to use Monte Carlo to simulate the impact of 
one unit of demand on each route at each time. However, it is impractical to enumerate all 
routes due to the fact that the number of possible routes grows exponentially with respect to 
the service network size. Our proposed approach bypasses this issue and works as follows: 

1. Initialize cost coefficients based on the physical features such as speed limit for each 
segment 𝑙 and iteration number 𝑛 = 0. Configure the time window, diesel/ electric 
shuttle distribution for each demand in the job assignment problem. Initialize the travel 
time and energy consumption parameters from historic data. For the load balancing 
part, initialize the route collections for each O/D pair based on the segment cost 
calculated with the cost coefficients.  

2. Check if the scheduling objective function value of the current iteration converges. If it 
converges, then stop the procedure and return with the order of shuttles at each stop 
node and corresponding routes; otherwise, continue to the next step. 

3. Update the traffic status, including travel time and energy consumption for the 
scheduling optimization part. 

4. Solve the job assignment problem using Gurobi Optimizer getting the order of shuttles 
at each stop node. 

5. Based on the scheduling of each shuttle, establish the initial route flow vector 𝑋(0). 

6. Check if the load balancing objective function value of the current iteration converges, 

i.e., |𝑇𝐶(𝑋(𝑛)) − 𝑇𝐶(𝑋(𝑛−1))|  < 𝜀; 𝜀 is set to be a small number. If it converges, then 
go to step 2 and return with route flow vector; otherwise, continue to the next step. 

7. Input the route flow vector 𝑋(𝑛) into the traffic simulator and obtain the marginal cost 
of each segment. 

8. Update the marginal cost of each segment as well as diesel/electric routes for each O/D 
pair and check whether there is a new minimal marginal cost route. If there is, then add 
it to the route collection. 

9. Solve the following optimization problem for each origin node 𝑜 to obtain a feasible 

route flow vector 𝑋̂𝑛. 

 min
X

∑ ∑ ∑ ∑ 𝑀𝐶𝑜,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑜,𝑗
𝑢  𝑋𝑜,𝑗,𝑟,𝑘

𝑢
𝑗∈ 𝐷𝑘∈ 𝐾  𝑢∈ 𝑈   (21) 

 ∑ ∑ ∑ 𝑋𝑜,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑜,𝑗,𝑘
𝑢  𝑘∈ 𝐾  𝑢∈ 𝑈 =  𝑞𝑜,𝑗 , ∀ 𝑗 ∈  𝐷 (22) 

 ∑ ∑ ∑ 𝑋𝑜,𝑗,𝑟,𝑘
𝑢

𝑟∈ 𝑅𝑜,𝑗,𝑘
𝑢  𝑗∈ 𝐷𝑘∈ 𝐾 ≤  𝑚𝑜

𝑢, ∀ 𝑢 ∈  𝑈 (23) 
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where 𝑀𝐶𝑜,𝑗,𝑟,𝑘
𝑢  is the marginal cost of route 𝑟 from 𝑜 to 𝑗 with a shuttle of type 𝑢 

departing at time 𝑘. The marginal cost of a route is the sum of the marginal costs of the 
segments along the route. 

10. Set the route flow vector for the next iteration as 𝑋(𝑛+1)  =  𝑋(𝑛)  + 𝜆(𝑛) ⋅ (𝑋̂𝑛 − 𝑋(𝑛)), 

where 𝜆(𝑛) is the step size at the 𝑛th iteration, then go back to step 6. The step size 

𝜆(𝑛) at the 𝑛th iteration is selected as in [36]. 

In the optimization algorithm, the marginal cost of each segment plays an important role, in 
pointing out the direction as well as the step size for the next iteration for the optimization 
algorithm. In the next subsection, we will present the calculation of marginal cost, which is used 
for the evaluation of the routes. In addition, we present the emission model used by the 
optimization procedure.  

2.3 Evaluation of optimum routes 

2.3.1 Marginal cost 

The marginal cost represents the change in the total cost if one unit of demand/shuttle is 
changed on the path. It can be formulated as follows: 

𝑀𝐶𝑃
𝑙′,𝑘′
𝑝′,𝑢′

=  
𝜕𝑇𝐶

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ =

𝜕 ∑ ∑ ∑ (𝑐𝑙,𝑘
𝑝,𝑢 + 𝜂 𝑡𝑙,𝑘

𝑝,𝑢)𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′  

=  𝑐
𝑙′,𝑘′
𝑝′,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

+ 𝜂 ∑ ∑ ∑
𝜕𝑡𝑙,𝑘

𝑝,𝑢

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ 𝑦𝑙,𝑘

𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

+ ∑ ∑ ∑
𝜕𝑐𝑙,𝑘

𝑝,𝑢

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ 𝑦𝑙,𝑘

𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

                                 (24) 

where the first two terms are the cost of the path and the third term describes the travel time 
cost change due to the impact on the link travel time based on the dynamics of the traffic flow 
system. The fourth term accounts for the change of energy cost associated with the changes in 
link volume and can be calculated approximately using the traffic network states from the 
simulator. According to the derivative chain rule and equation (15): 

 
𝜕𝑡𝑙,𝑘

𝑝,𝑢

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′ =  ∑

𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1 =  ∑
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘

𝑁𝑝

𝑛𝑝=1

𝜕𝑧̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′  (25) 

where 𝑧̂𝑝,𝑛𝑝,𝑘  is the traffic volume of the link 𝑒𝑝,𝑛𝑝
 on path 𝑝 with the path departure time 

being 𝜉𝑘,𝑒𝑝,𝑛_𝑝.The term 
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘
 represents the travel time change in link 𝑒𝑝,𝑛𝑝

 at time 𝜉𝑘,𝑒𝑝,𝑛_𝑝. 

caused by changing the link volume by one unit. One of the most commonly used relationships 
between link volume and travel time is the Bureau of Public Roads (BPR) function [48].  

 𝑤𝑒 = 𝑡𝑓(1 + 𝛼𝑒 (
𝑧𝑒

𝐶𝐴𝑃𝑒
)

𝛽𝑒

 (26) 
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where 𝑤𝑒  is the link travel time, 𝑡𝑓  is the link free-flow travel time, 𝑧𝑒 is the vehicle volume on 

link 𝑒 and 𝐶𝐴𝑃𝑒 is the road link capacity. 𝛼𝑒 and 𝛽𝑒  are parameters for the model and can be 

estimated through historical traffic data. Then the link travel time derivative 
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘
 based on 

equation (26) can be written as follows: 

 
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑧̂𝑝,𝑛𝑝,𝑘
=  

𝛼𝑒𝑝,𝑛𝑝
𝛽𝑒𝑝,𝑛𝑝

𝑡𝑓𝑧̂𝑝,𝑛𝑝,𝑘

𝛽𝑒𝑝,𝑛𝑝
−1

𝐶𝐴𝑃𝑒𝑝,𝑛𝑝

 ≡ 𝐵𝑝,𝑛𝑝,𝑘𝑧̂𝑝,𝑛𝑝,𝑘

𝛽𝑒𝑝,𝑛𝑝
−1

 (27) 

After the derivation, the final form of marginal cost is: 

𝑀𝐶𝑃
𝑙′,𝑘′
𝑝′,𝑢′

=  𝑐
𝑙′,𝑘′
𝑝′,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

 

                       + 𝜂 ∑ ∑ ∑ ∑
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1

𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

+ ∑ ∑ ∑ ∑
𝜕ℎ𝑢(𝑣𝑝,𝑛𝑝,𝑘)

𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1

𝑑𝑝,𝑛𝑝
𝑦𝑙,𝑘

𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

 

                  =  𝑐
𝑙′,𝑘′
𝑝′ ,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

+ ∑ ∑ ∑ ∑ (𝜂 +
𝜕ℎ𝑢(𝑣𝑝,𝑛𝑝,𝑘)

𝜕𝑤̂𝑝,𝑛𝑝,𝑘
𝑑𝑝,𝑛𝑝

)
𝜕𝑤̂𝑝,𝑛𝑝,𝑘

𝜕𝑦
𝑙′,𝑘′
𝑝′,𝑢′

𝑁𝑝

𝑛𝑝=1

𝑦𝑙,𝑘
𝑝,𝑢

𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

  

                  ≈  𝑐
𝑙′,𝑘′
𝑝′ ,𝑢′

+  𝜂 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

+  ∑ ∑ ∑ ∑ 1𝑒𝑝,𝑛𝑝
′ ,𝜉

𝑘′,𝑒𝑝,𝑛𝑝
′

(𝑒𝑝,𝑛𝑝
, 𝜉𝑘,𝑒𝑝,𝑛𝑝

)

𝑁𝑝

𝑛𝑝=1𝑝∈𝑃;𝑙∈𝐿𝑘∈𝐾

 

⋅ 𝑦𝑙,𝑘
𝑝,𝑢 1

𝑣𝑝,𝑛𝑝,𝑘∆𝑡
(𝜂 +

𝜕ℎ𝑢(𝑣𝑝,𝑛𝑝,𝑘)

𝜕𝑤̂𝑝,𝑛𝑝,𝑘
𝑑𝑝,𝑛𝑝

) 𝐵𝑝,𝑛𝑝,𝑘𝑧̂𝑝,𝑛𝑝,𝑘

𝛽𝑒𝑝,𝑛𝑝
−1

 (28) 

Since the first and second terms are decomposable with respect to the links, the marginal costs 
of the paths belonging to the same segment will be placed in equilibrium by running a dynamic 

assignment algorithm. Then the marginal cost for a segment 𝑀𝐶𝑙′,𝑘′
𝑢′

 is approximated by its 

marginal cost of path 𝑀𝐶𝑃
𝑙′,𝑘′
𝑝′,𝑢′

. The calculation of the marginal cost of a segment requires the 

knowledge of the propagation of other segments 1𝑒𝑝,𝑛𝑝
′ ,𝜉

𝑘′,𝑒𝑝,𝑛𝑝
′

(𝑒𝑝,𝑛𝑝
, 𝜉𝑘,𝑒𝑝,𝑛𝑝

), the basic traffic 

network status (𝑤̂𝑝,𝑛𝑝,𝑘, 𝑧̂𝑝,𝑛𝑝,𝑘, 𝑣𝑝,𝑛𝑝,𝑘, ℎ𝑢 (𝑣𝑝,𝑛𝑝,𝑘)), as well as the aggregated segment-level 

information (𝑐
𝑙′,𝑘′
𝑝′ ,𝑢′

 , 𝑡
𝑙′,𝑘′
𝑝′,𝑢′

, 𝑦𝑙,𝑘
𝑝,𝑢 ) from the simulator. With the marginal cost of each segment 

updated, route collections are updated by checking whether there are new lower marginal cost 
routes. Then the route flow vector 𝑋 is updated to move along the descent direction with the 
step size described in the previous subsection based on the knowledge of the updated marginal 
cost. The algorithm stops when no more improvement on the total cost can be gained. 
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2.3.2 Emission models 

The emissions generated as a result of assignment and routing procedure are estimated using 
the EPA model MOVES and include 𝐻𝐶, 𝐶𝑂, 𝑁𝑂𝑋, 𝐶𝑂2, 𝑃𝑀25 [49]. MOVES is developed by EPA. 
It generates emission rates and emission inventories for both on-road motor vehicles and non-
road equipment based on historical data of EPA. To use MOVES, the user specifies vehicle 
types, time periods, pollutants to observe, vehicle operating characteristics such as speed and 
acceleration, and road types as the inputs of the model. The model provides estimates of total 
emissions or emission rates per vehicle or unit of activity under different operation modes, such 
as operating, starting or idling. 

2.4 Numerical results 

This section presents the evaluation of the proposed CENCOS system using a hybrid digital twin 
network which covers LAX to LA downtown area built using the microscopic traffic simulator 
Vissim and a macroscopic traffic simulator Visum. The road network covered is shown in Figures 
2 and 3. Lane characteristics such as length, capacity, speed limit et al. are incorporated in the 
Vissim and Visum network. Aside from the static road network characteristics, details of 
dynamic characteristics such as traffic light and signal control and sensor information are 
configured in the Vissim microscopic network. Due to the size and number of shuttle buses 
comparing with other road users in the LAX terminal, their management affects the overall 
transportation network. The background traffic is expressed as the number of trips between 
nodes that are origins and destinations. The historical freeway traffic flow data are obtained 
from PeMS [46] and Google Maps [47]. The raw traffic data are processed 
(formatted/truncated/aggregated) to fit the format of the traffic simulator. The background 
traffic conditions used in the numerical experiments is measured from the raw traffic data 
during medium traffic congestion hour (12pm to 4pm). The service network nodes used for load 
balancing layer are composed of demand nodes as well as intersections of freeways and major 
arterial ways. The demand of shuttles is provided with specifications on origin, destination and 
time window. To include the electric shuttles in the fleet, we assume the penetration of electric 
shuttles in the whole fleet varies from 0 to 100 percentage. The length of each interval is 30 
minutes.  

2.4.1 On CENCOS performance 

To measure the performance of congestion alleviation of the proposed method, we compare 
the average shuttle operation time and background traffic speed in the airport between the 
current practice and the proposed system. The operation time in the airport is the difference 
between a shuttle entering and exiting time. It can be interpreted as the sum of travel time and 
waiting time in the airport area. The results of average operation time and background traffic 
speed under medium and heavy background traffic conditions are shown in Table 1 to Table 3, 
below. 
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Table 1. Performance on operation time and background traffic speed in airport under light 
traffic condition 

 
Operation time Travel time Waiting time Background traffic speed 

current practice 12.0 min 4.2 min 7.8 min 15.9 mile/h 

CENCOS 11.8 min 4.1 min 7.7 min 16.1 mile/h 

Table 2. Performance on operation time and background traffic speed in airport under 
medium traffic condition 

 
Operation time Travel time Waiting time Background traffic speed 

current practice 18.2 min 8.0 min 10.2 min 8.2 mile/h 

CENCOS 13.6 min 5.5 min 8.1 min 12.1 mile/h 

Table 3. Performance on operation time and background traffic speed in airport under heavy 
traffic condition 

 
Operation time Travel time Waiting time Background traffic speed 

current practice 23.2min 12.2 min 11.0 min 5.4 mile/h 

CENCOS 15.5 min 6.9 min 8.6 min 9.5 mile/h 

Under medium traffic condition, shuttles following the scheduling and routing management 
from CENCOS system spend 4.6 minutes per shuttle less than the current practice. The 
background traffic speed in the airport area increases from 8.2 mile/h to 12.1 mile/h. Under 
heavy traffic condition, shuttles following the scheduling and routing management from 
CENCOS system spend 7.7 minutes per shuttle less than the current practice. The background 
traffic speed in the airport area increases from 5.4 mile/h to 9.5 mile/h. The operation time of a 
shuttle reflects the sum of travel time on the road link and waiting time at each stop node 
spent in the airport area. From the results, under medium traffic condition, each shuttle saves 
average 2.5 minutes travel time and 2.1 minutes waiting time using CENCOS system. Under 
heavy traffic condition, the savings on travel time and waiting time are 5.3 minutes and 2.4 
minutes. 

Based on the results of the comparison of operation time and background traffic speed in the 
LAX airport area between current practice and the CENCOS system, we make the following 
observations: 

• The shuttles spend less waiting time and traveling time in the airport area when 
following the management from CENCOS system. 

• The benefits generated by the CENCOS system increase as the traffic becomes more 
congested and in fact it reduces the level of congestion. 
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We then perform comparison experiments between shuttle management systems with and 
without optimally centralized coordination under various penetration of electric shuttles in the 
fleet. To show the benefits of applying scheduling and load balancing co-simulation 
optimization assignment, we compared the proposed system against a mixed shuttle 
assignment system without optimally scheduling and routing. The non-coordinated system 
assumes that for each demand and the shuttle type associated with it, given the cost of each 
route between the origin and destination, the shuttle follows the individual minimal cost route 
according to the required time window. In the comparison we show that the lack of optimally 
centralized coordination of scheduling and routing of the shuttles and the lack of exchange of 
information among different shuttle providers may lead to many shuttles using overlapping 
routes and stop points which causes congestion. In the case of optimally CENCOS system, the 
scheduling layer first sorts the shuttles for each stop node to avoid congestion in each node and 
then in the load balancing layer, the changes of traffic flow characteristics on a certain route as 
well as the reactions of background traffic is reflected in the marginal cost so that the shuttles 
assigned on this route may be shifted to another route with lower marginal cost. In this way, 
the total cost of the assignment of overall shuttle cost can be reduced by reducing overlapping 
in routes and stop points . The comparison is shown in Figure 7. From the comparison results, 
we can see the average savings by applying CENCOS assignment versus system without CENCOS 
is 30.3%.  

 

Figure 7. Comparison cases on system with and without CENCOS 

We next test the system under various percentages of electric shuttle penetration. Under the 
predetermined background traffic condition, the percentage of electric vehicles in the whole 
shuttle fleet is varied from 0 % to 100 % in increments of 10 %. The results include total costs in 
US dollars of the assignment, the weight in unit of gram of several emissions (CO, NOX, CO2, 
PM25) as well as fuel consumed in unit of kg. The emissions are calculated by the modified EPA 
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model MOVES [49] with speed as input and emissions in units of g/mile as output. The results 
are shown in Figure 8. 

 

Figure 8. Results of total cost, fuel consumption and emissions 

The above results lead to the following conclusions: 

• The CENCOS system shows the savings on total cost of 30.3% versus traditional shuttle 
management system by optimally scheduling and routing shuttles with a co-simulation 
optimization method. 

• The total cost of shuttle assignment from the CENCOS system decreases as the number 
of electric shuttles increases. 

• The emissions go down drastically as the number of electric shuttles increases in the 
fleet. 

2.4.2 On incorporated autonomous shuttles in the CENCOS system  

The CENCOS system is compatible with the addition of autonomous shuttles. The autonomous 
shuttles can be incorporated as demand specified in origin, destination, time window and type 
of shuttle to serve. After the scheduling layer, the order of autonomous shuttles is temporally 
decided at each stop node. Then the autonomous shuttle demand is passed to load balancing 
layer together with the traffic load of non-autonomous shuttles. In the routing layer, since we 
assume that for safety autonomous shuttles follow a fixed route, the traffic load of autonomous 
shuttles is added in the simulator as another group with no capability of dynamic traffic 
assignment. In this way, the autonomous shuttles are fixed on running on a certain route and 
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stops at stop nodes. Then the total cost of autonomous shuttles can be calculated through the 
traffic status provided by the traffic simulator.  

3. Conclusions 

In this project, we have proposed a centrally coordinated scheduling and routing system for 
shuttle management with LAX Terminals as application area. The dynamics and interactions 
with background traffic have been considered as well as inclusions of electric shuttles with their 
penetration varying from 0% to 100%. The electric shuttles have additional constraints that 
include limited range, longer refueling (charging) times and in addition the depletion rate of the 
battery life depends on traffic conditions. These characteristics introduce additional constraints 
that need to be taken into account in finding optimum schedules and routes that lead to shuttle 
load balance across the road network. The system is built on a two-layer framework, where the 
upper scheduling layer decides the order of shuttles entering and leaving each stop node and 
the bottom load balancing layer assign the shuttles across the road network aiming for 
minimum system cost. The integrated Gurobi Optimizer and co-simulation optimization method 
is used to solve the problem. A microscopic and macroscopic traffic simulation models are 
integrated in the CENCOS system to accurately predict the states of the transportation system 
as well as save computation time. A digital twin of the LAX to LA downtown traffic flow network 
is used to evaluate the system and the impact of electric shuttles in a mixed fleet. The CENCOS 
system shows the ability to alleviate traffic congestion in the airport area with respect to 
shuttle operation time and background traffic speed. The system shows 30.3% savings over 
one without the CENCOS system. Another result reveals that the use of electric shuttles can 
notably reduce the emissions and total cost without including the charging time. The 
application of CENCOS system provides a promising direction for the airport shuttle 
management that can be also utilized by other airports. 
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Data Summary  

Products of Research  

The traffic flow data from Caltrans Performance Measurement System (PeMS) were collected 
for the study. 

Data Format and Content  

Data is in the format of zip file and includes following traffic information: timestamp, sensing 
station identifier, direction of travel, lane type, station length, total flow, average speed. 

Data Access and Sharing  

The general public can access the data through website https://pems.dot.ca.gov/. 

Reuse and Redistribution  

The data can be reused and redistributed by the general public through website 
https://pems.dot.ca.gov/.  

https://pems.dot.ca.gov/
https://pems.dot.ca.gov/
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