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ABSTRACT 

This research aims to develop a unified theoretical and simulation framework for analyzing and 
designing signals for stationary arterial networks. Existing traffic flow models used in design and 
analysis of signal control strategies are either too simple to be realistic or too detailed to be 
efficient. 

In this research we apply the link transmission model to formulate, analyze, and simulate traffic 
dynamics in a signalized arte1ial network. We first analytically derive approximate macroscopic 
fundamental diagrams for stationary traffic patterns with different network topologies, road 
conditions, driving behaviors, and signal settings. We then analyze congestion mitigation effects 
of different signal settings, including cycle lengths, green splits, and offsets. We further 
formulate and solve an optimization problem with the network flow-rate as performance measure 
to find optimal signal control parameters. We derived simple formulas for the optimal signal 
cycle length and offset under different traffic conditions to improve arterial network 
performance. 
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Chapter 1 
Literature Review 

1.1 Background 

Traffic signals have been widely deployed to resolve conflicts among various traffic 
streams and improve safety of drivers and pedestrians at busy urban intersections. But signalized 
intersections are also major network bottlenecks, inducing stop-and-go traffic patterns, travel 
delays, and vehicle emissions. Many efforts have been devoted to mitigating the congestion 
effects of isolated and coordinated intersections by optimally designing phase sequences, cycle 
lengths, green splits, offsets, and other parameters of traffic signals (Papageorgiou et al., 2005). 

In existing signal analysis and design methods, performance measures include individual 
vehicles' delays or the level of service at signalized intersections (Webster, 1958; Lo, 1999, 2001; 
Li, 2010), the bandwidth of a set of coordinated signalized intersections (Roess et al., 2010), the 
whole traffic system's throughput (Li, 2010), a combination of delays and early anival flows (He 
et al., 2010), or the mean of excess delays (Zhang et al., 2010). To evaluate these performances, 
underlying most of existing signal analysis and design methods are two types of traffic flow 
models: simple f01mulas for aggregate delay and bandwidth or traffic simulation models. The 
first type of methods are usually analytical, and the second type simulation-based. However, 
existing methods for traffic signal analysis and design are either too simplistic to be physically 
realistic or too complicated to be mathematically tractable, and there still lacks a systematic 
method ( even) for mathematically analyzing and designing traffic signals for a large-scale 
arterial network, even for "a one-way arterial" (Newell, 1989). 

Since the introduction of the celebrated LWR model (Lighthill and Whitham, 1955; 
Richards, 1956), kinematic wave theory has been successfully applied to describe traffic 
dynamics on both freeways and arterial roads. It has been shown to be capable of captming 
shock and rarefaction waves and the initiation, propagation, and dissipation of traffic queues, 
caused by vaiious bottlenecks and interactions among vehicles. In particulai·, with the Cell 
Transmission Model (CTM) and other network kinematic wave theory (Daganzo, 1995; 
Lebacque, 1996), traffic dynamics in a road network can be systematically modeled. Compared 
with microscopic models, such network kinematic wave models are more suitable for studying 
traffic dynamics in large-scale arterial road networks. In addition, with the availability of various 
types of traffic data and the development of connected and automated vehicles, it is high time to 
develop effective and efficient methods for analyzing and designing signals for large-scale 
aiterial networks. 

1.2 Existing signal design and analysis methods 

Traditionally pe1formance measures used in the analysis and design of traffic signals 
include individual vehicles' delays or the level of service at signalized intersections (Webster, 
1958; Lo, 1999, 2001 ; Li, 2010), the bandwidth of a set of coordinated signalized intersections 
(Roess et al., 2010), the whole traffic system's throughput (Li, 2010), a combination of delays 
and early arrival flows (He et al., 2010), or the mean of excess delays (Zhang et al., 2010). To 
evaluate these performances, underlying most of existing signal analysis and design methods are 



two types of traffic flow models: simple formulas for aggregate delay and bandwidth or traffic 
simulation models. The first type of methods are usually analytical, and the second type 
simulation-based. 

1.2.1 Analytical methods 

For signal control on local arte1ials, it can be classified into two types according to the 
number of targeted intersections: for isolated intersections only and for coordinated intersections. 
In the literature, there have been a number of signal control strategies proposed for each category. 
In the following subsections, we provide a review of some prevailing strategies. 

For isolated intersections 
According to (Papageorgiou et al., 2003), fixed-time control strategies for a single 

intersection can be stage-based or phase-based. For stage-based strategies, the stage settings are 
fixed, and the proposed strategies are developed to find optimal splits and cycle lengths by 
minimizing the total delay or maximizing the total throughput at the intersection. To calculate 
vehicle's average delay, the delay formulation proposed by Webster (Webster, 1958) has been 
widely used in the literature, which can be formulated as follows: 

1 ( g)2 
1 -C 1-- X2 C 3 

d = 2 C + ----- 0.65 (-) x 2
+

5! (1) 
v 2 1 - g x 2v(1 - X) 

C 
where 

C =cycle length, 

g =effective green time, 

v =anival flow-rate, 

c =capacity of the intersection approach, 

s = saturation flow-rate, 

X = ~ = ~ , the degree of saturation. 
C sg 

The above delay calculation consists of three parts: the first part is the uniform delay; the 
second part is the random delay; and the third part is the empirical adjustment. In (Webster, 
1958), optimal cycle lengths were obtained by minimizing the total delay at the intersection 
under given anival flow-rates. In (Miller, 1963b), to obtain optimal settings of splits and cycle 
lengths, various anival patterns were taken into account in the calculation of random delay. 
Since it is possible that an approach may have 1ight of way in more than one stage within a cycle, 
SIGSET was proposed in (Allsop, 1971a; Allsop, 1971b) to take into account such a case, and 
Webster's delay formula was used in the delay estimation. By minimizing the total delay with 
the capacity, cycle lengths, and minimum green time constraints, optimal settings of cycle length 
and effective green time for each stage were obtained. Under similar constraints as those in 



SIGSET, another program called SIGCAP was proposed in (Allsop, 1972; Allsop, 1976) to 
maximize the practical capacity at signalized intersections. 

Different from stage-based control strategies, phase-based control strategies are 
developed to further consider optimal stage settings. One example can be found in (Improta and 
Cantarella, 1984), in which the constraint of fixed staging was released. Instead, incompatibility 
of traffic streams was introduced as a constraint in the optimization problem. By either 
minimizing the total delay or maximizing the intersection capacity, optimal settings of splits, 
cycle lengths, and stage settings can be obtained. In (Improta and Cantarella, 1984), the 
optimization problem was formulated as a binary-mixed-integer-linear- programming (BMILP) 
problem, and solutions were obtained using a branch-and-bound method. 

Besides fixed-time control strategies, there also exist traffic-responsive control strategies 
that utilize the real-time loop detector data in the field. In (De la Breteque and Jezequel, 1979), 
examples such as the Vehicle Interval strategy, the Volume Density strategy, and Miller's 
algorithm were provided. In the Vehicle Interval strategy, each stage has a set of pre-specified 
minimum and maximum green times. If a vehicle is detected to cross the intersection, a critical 
interval (CI) will be used to extend the green time to allow that vehicle to pass. A similar control 
logit was used in the Volume Density strategy. But it fmther takes into account queue lengths 
and vehicles' waiting times during the red phases while deciding the switching time instants. In 
(Miller, 1963a), a computer program was used to detennine whether to switch the signal 
immediately or to delay the switch for a user-defined time interval at every time step. Such a 
decision is made based on the evaluation of the time gain in postponing the switch. If the time 
gain is negative, the signal is switched immediately; otherwise, it remains unchanged for the next 
time step. 

For coordinated intersections 
If traffic signals in an arte1ial are close enough, the dissipation of vehicles is usually in 

platoons. Therefore, it is possible to synchronize the signals so as to allow vehicles travel along 
the arte1ial from the beginning to the end without stopping. In this case, bandwidth in one traffic 
direction is defined as the time difference between the first and the last vehicles that satisfy the 
above requirement. In the literature, there have been studies trying to maximize the bandwidths 
along the arterial. For example, with given cycle and speed ranges, MAXBAND was introduced 
in (Little, 1966) to obtain optimal offset settings so as to maximize the total bandwidths of a two­
way arte1ial. The optimization problem was formulated as a mixed-integer-linear-programing 
(MILP) problem, and a branch-and-bound method was used to solve it. Later in (Gartner et al., 
1991), MULTI-BAND was proposed to add new features such as determination of left-tum 
phases and different bandwidths among the links into the optimization problem. In (Robertson, 
1969), TRANSYT (TRAffic Network StudY Tool) was proposed to obtain multi-directional 
green waves so as to minimize the total delay. Such a model consists of two parts: (i) with given 
network information such as road geometries, turning ratios at intersection, and demands, a 
platoon dispersion model is used to describe vehicle's progression inside a link; (ii) a "hill­
climbing" method is used to solve the optimization problem. Performance Index (PI) is 
introduced to evaluate the improvements at each optimization step. The program will stop when 
a (local) minimum is found. 



Due to the fact that demands and turning movements at intersections are changing as time 
elapses, traffic-responsive coordinated strategies have also been proposed in the literature. 
SCOOT (Split, Cycle and Offset Optimization Technique), which is a traffic-responsive version 
of TRANSYT, was proposed in (Hunt et al., 1982; Hunt et al., 1981). While keeping similar 
optimization structure as in TRANSYT, SCOOT works in a real-time fashion: it utilizes real­
time measurements of flows and occupancies from vehicle loop detectors to predict delay and 
stops; the signal optimizer works in real time, and new signal settings are implemented directly 
on the street. Besides SCOOT, another alg01ithm called OPAC (Optimization Policies for 
Adaptive Control), which is a model-based traffic-responsive strategy, was proposed in (Gartner, 
1983). In OPAC, splits, offsets, and cycles are not explicitly considered. A rolling horizon 
approach is used for real-time applications: at time t , the optimization method calculates an 
optimal switching scheme for the time interval [ t - h, t + H - h] ( H > h) based on the data in 
the time interval [t - h, t] and applies it to the time interval [t, t + h]; then the optimization time 
horizon moves to the next step, t + h. Note that since OPAC employs complete enumeration in 
the optimization, it is not real-time feasible for multiple intersections (Papageorgiou et al., 2003). 

1.2.2 Simulation-based methods 

In the second type of methods, various traffic flow models are used to simulate traffic 
dynamics, and optimal control problems are formulated to find best signal settings 
simultaneously subject to given demand patterns (Gazis and Potts, 1963; Gazis, 1964; D 'ans and 
Gazis, 1976; Improta and Cantarella, 1984; Papageorgiou, 1995; Park et al., 1999; Chang and 
Lin, 2000; Chang and Sun, 2004). For example, the Cell Transmission Model (CTM) (Daganzo, 
1995; Lebacque, 1996) has been incorporated into numerous formulations of the traffic signal 
problem (Lo, 1999; Li, 2010). Such models can are more realistic in traffic dynamics, but are too 
detailed to be amenable for mathematical analysis. In addition, these f01mulations usually end up 
as mixed-integer linear programing (MILP) problems, which can be effectively solved only for 
small networks and become numerically formidable for large-scale arterial networks. 

1.3 Network traffic flow models 

Since the introduction of the celebrated LWR model (Lighthill and Whitham, 1955; 
Richards, 1956), kinematic wave theory has been successfully applied to describe traffic 
dynamics on both freeways and arterial roads. It has been shown to be capable of capturing 
shock and rarefaction waves and the initiation, propagation, and dissipation of traffic queues, 
caused by various bottlenecks and interactions among vehicles. In particular, with the Cell 
Transmission Model (CTM) and other network kinematic wave theory (Daganzo, 1995; 
Lebacque,1996), traffic dynamics in a road network can be systematically modeled. 

1.3.1 Cell transmission model 

In kinematic wave the01ies, traffic flow is considered as a continuous media. Three 
location-and-time dependent variables, speed v(x, t), density k(x, t), and flow-rate q(x, t), are 
used to desc1ibe the traffic flow characteristics at point x and time t. For a road section without 
any entrances and exits, flow conservation is hold, which can be written as 

a1<(x,t) + aq(x,t) = 0 (2) 
at ax 



In traffic flow, it is well known that there exists a fundamental relation between flow-rate (or 
speed) and density (Greenshields, 1935), i.e., q(x, t) = Q(k(x, t)) or v(x, t) = V(k(x, t)). Such 
a relation is known as the traffic flow fundamental diagram and can be validated using the 
vehicle loop detector data from freeways. Generally speaking, Q ( k) is a concave function and 
attains its capacity C at k = kc, where kc is the critical density. Introducing the fundamental 
diagram into Equation (2), the Lighthill-Whitham-Riahcrds (L WR) model (Lighthill and 
Whitham , 1955; Richards, 1956) is obtained. 

ok(x,t ) + oQ(k(x,t)) = 0 (3) 
at ax 

Equation (3) is a hyperbolic conservation law and is difficult to solve analytically under 
general initial and boundary conditions. Therefore, in (Daganzo, 1994; Daganzo, 1995), the cell 
transmission model (CTM) was introduced to numerically solve Equation (3). According to the 
Godunov method (Godunov, 1959), a link is equally divided into N cells with a length of !1x , and 
the whole time inte1val is pa1t itioned into J time steps with an inte1val of /1t. In Figure 1.1, cell 
representation inside a regular link is provided. Then the discrete version of Equation (3) can be 
written as 

(4) 

J, j I I -r; 
i-1 I k j I J; 
~ ' -t-+ I 

Cell 1 Cell i Cell N 

Figure 1.1 Cell representation inside a regular link 

where k{ and k{+i are the densities of cell i at time steps j and j+ 1, respectively, and ft~ 1 and 

f/ are the upstream and downstream bounda1y fluxes of cell i at time step j , respectively. Here, 

the choice of~ should follow the CFL condition (Courant et al., 1928), which requires a vehicle 
t:i.x 

cannot travel across one cell at one time step. That is, v1~t :5 1, where Vf is the free-flow speed of 

that link. Given densities and fluxes at time step j , the density at time step j+ 1 can be updated 
using the following equation: 

j+l - j f1t j j 
k. - k. + (F. - f". ) 2) 

l l f1 X li- 1 Ji 

To obtain the fluxes crossing the cell boundaries, the definitions of demand D and supply 
S (Daganzo, 1995; Lebacque, 1996) are introduced and can be calculated as 

D = Q(min{k, kc}) 3) 
S = Q(max{k, kc}) 

4) 
Therefore, the flux through a cell bounda1y can be calculated by taking the minimum of the 
upstream cell's demand and the downstream cell's supply, which is 

/;_~1 = min{D/_1,s/} 5) 

where D/_1 is the demand of cell i-1 , ands( is the supply of cell i at time step j . For freeway 
networks, network junction models such as those in (Daganzo, 1995; Lebacque, 1996; Jin et al , 



2009; Jin, 2010, Jin, 2012a; Jin, 2014a) are needed to model the traffic dynamics at various types 
of junctions. For urban networks, besides the network junction models, signal control should be 
considered in order to manage the conflicting traffic movements at the intersections. 

1.3.2 Link transmission model 

Traditionally, at a point (a,xa) inside link a, the density ka(Xa, t) , the speed va(Xa, t) , 
the flow-rate qa(Xa, t) are used as vaiiables to describe the evolution of traffic flow. The flow 

conservation, aka+ aqa = 0, together with the traffic flow fundamental diagram, qa = Qa(ka), at ax 
forms the LWR model. However, we also can use another type of state variable, which is the 
cumulative flow, Aa(Xa, t), and is known as the Moskovitz function (Moskowitz, 1965). Since 

we have ka = - aAa, and qa = aAa, the flow conservation is automatically satisfied if we have ax at 
::~; = !::;. Therefore, to solve the LWR model in Equation 3 is equivalent to solve the 

following Hainilton-Jacobi equation 

aAa aAa ( ) at- Qa(- ax)= 0 6 

with the Hainiltonian H (aAa) = -Qa(- aAa)_ Besides CTM, another new solution to the LWR ax ax 
model, which is called the Link Transmission Model (LTM), was proposed in recent studies. The 
discrete version can be found in (Yperman, 2007), while its continuous version can be referred to 
(Jin, 2014b). 

Here, the triangular traffic flow fundamental diagram (Haberman, 1977), q = Q(k) = 
min{v1k, w(kj - k)}, is used. The initial cumulative flow at Xa E [O, La] is denoted as Na(xa)­
The cumulative in-flow and the in-flux at the upstream boundary ai·e denoted as Fa(t) and fa(t) , 
respectively. The cumulative out-flow and the out-flux at the downstream boundary are denoted 
as Ga(t) and Ba(t) , respectively. To desc1ibe the congestion pattern inside a link, two vaiiables, 
the link queue size aa(t) and the link vacancy size Pa(t) are used and can be calculated as 
follows: 

L 
Na(La - Va.r t) - Ga(t) t < ~ 

- Va,t 
aa(t) = ( ) 

Fa t - La - Ga(t) t > La 
Va,f Va,tLa (7) 

Na(Wat) + ka,jWat - Fa(t) t :5 ;--

/la(t) = L ) La 
{ G (t - ...!:.. + k · L - F, ( t) t > ...!:.. a W a,J a a W 

a a 
Initially, we have a(0) = 0 and /1(0) = 0. In the LTM, either cumulative flows or link queue 
and vacancy sizes can be used as stable variables to describe the evolution of traffic dynamics. If 
the cumulative flow, i.e., Fa(t) and Ga(t), are used, we have the following evolution equations: 

(8) 



L 
ka(La - Va,ft, o)va,f - Ba(t) t :5 _ a 

Va,f 

dt 
fa(t- La )-ga(t) 

Va,f 

L 
t>-a 

Va,f 
La 

(9) 

fla(t) _ -ka(wat, 0)wa + ka,jWa - fa(t) t :5 Wa 

dt - { ( La) Bat-- -fa(t) La t>-
Wa Wa 

d

d 
dt Ga(t) = Ba(t) 

If the link queue and vacancy sizes, i.e., aa(t) and fla(t), are used, we have the following 
evolution equations: 

To update the evolution functions in Equations 11 and 12, the in-fluxes and out-fluxes are 
needed to be calculated/updated first. Here we define an indicator function H (y) for y 2:: 0 , 
which is formulated as follows: 

. Y { 0 y = 0 H(y) - 11m - - (10) 
- M➔o+ fit - +oo y > 0 

Then the link demand da(t) and link supply sa(t) are defined as 

L 
min{ka(La - Va,ft, 0)va,f + H(aa(t) ), Ca} t < ~ 

- Va,f 

min{fa (t - La ) + H( aa(t) ), Ca} t > La 
Va,f Va,t (11) 

min{ka,jWa - ka(Wat, 0)wa + H(fla(t) ), Ca} t :5 ~a 

Sa(t) = L La 
{ min{ga (t -....!!.) + H(fla(t)), Ca} t > ....!!. 

Wa Wa 
At a junction j , macroscopic junction models are used to determine the in-fluxes and out-fluxes 
from the upstream link demands, downstream link supplies, and turning proportions, which in 
general can be written as follows: 

(oj(t),[j(t)) = F(dj(t),sj(t),fj(t))) (12) 

Here, gj(t) is the set of in-fluxes, while [j(t) is the set of out-fluxes. dj(t) is the set of 
upstream link demands, while sj(t) is the set of downstream link supplies. {j(t) is a matrix that 
contains turning proportions from the upstream links to the downstream ones. As shown in (Jin, 
2014b), non-invariant junction models cannot be used in the LTM, which may yield no solution 
to the traffic statics problem under certain traffic conditions. A set of invariant junction models 
can be found in (Jin et al., 2009; Jin, 2010, Jin, 2012a; Jin, 2014a). 

With Equations 14 and 15, the in-fluxes and out-fluxes can be calculated and then be 
introduced into Equations 11 or 12 to update the state variables. But note that, as shown in 
Equation 14, link demands and supplies depend on the historical data, and therefore, Equations 



11 and 12 are systems of ordina1y differential equations (ODEs) with delays. Once the 
cumulative in-flows Fa(t) and the cumulative out-flows Ga(t) are obtained, traffic states inside 
link a can be obtained. More details can be refened to (Jin, 2014b). 

1.4 Stationary states and macroscopic fundamental diagram 

1.4.1 Stationary states 

(d) 6:45pm 

Figure 1.2 Typical traffic conditions in downtown Los Angeles during Monday's afternoon peak 
periods (Source: Google Maps Traffic) 

Figure 1.2 demonstrates typical traffic conditions in downtown Los Angeles during 
Monday's afternoon peak periods. Comparing the left figures, (a) and (d), and the right figures, 
(b) and (c), we can see that traffic conditions are relatively stationmy on the a1terial network 
from 5:15 to 5:45; that is, congested links, queue lengths, and bottleneck locations remain almost 
the same during the period. Such stationmy patterns have also been obse1ved in freeway 
networks (Jin, 2015b), and we believe that stationa1y traffic patterns in mterial networks m·e also 
caused by that ''the traffic demand and origin-destination desires are relatively constant over the 
time period" (Wattleworth, 1967). The existence of such stationa1y traffic patterns is also 
consistent with our daily driving experience: we experience almost the same level of congestion 
on the same link at the same time every day. 

fu many studies on analysis, control, management, planning, and design of road networks 
during peak periods, traffic patterns have been assumed to be stationary (Merchant and 



Nemhauser, 1978b; Yang and Yagar, 1995; Yang and Lam, 1996): in (Beckmann et al., 1956), 
the static traffic assignment problem was formulated to determine the aggregate route choice 
behaviors of vehicles; in (Godfrey, 1969), it was postulated that a network-wide macroscopic 
fundamental diagram (MFD) exists in such stationary, or steady, states, and this has been 
verified by observations (Geroliminis and Daganzo, 2008); in (Wattleworth, 1967), the local and 
global control problem of a freeway system was solved with linear programming methods; in 
(Potts and Oliver, 1972), network flow conservation problems are solved; and in (Payne and 
Thompson, 1974), the integrated traffic assignment and ramp metering problem was solved for 
stationary traffic patterns. 

1.4.2 Macroscopic fundamental diagrams 

ill stationary urban road networks, it was postulated that there exists a relation between 
network-average flow and density in (Godfrey, 1969). Such a relation is called the macroscopic 
fundamental diagram (MFD) and has been shown to be unique in homogeneous networks, but 
not in non-homogeneous ones with simulations and observations (Ardekani and Herman, 1987; 
Mahmassani et al., 1987; Olszewski et al., 1995; Geroliminis and Daganzo, 2008; Buisson and 
Ladier, 2009; Cassidy et al., 2011; Geroliminis and Boyaci, 2012). In (Daganzo, 2007; 
Geroliminis et al., 2013), regional demand control strategies were developed based on MFD. 

As a system-wide characte1istic, MFD emerges from network traffic flow patterns, which 
are determined by network topology, signal and other control measures, and drivers' choices in 
destinations, modes, departure times, routes, and speeds. Some efforts have been devoted to 
deriving MFD in simple signalized networks from various traffic flow models. ill (Gartner and 
Wagner, 2004), with cellular automaton simulations for traffic on a ring road, which has multiple 
identical signals, the relationship between flow-rate, density, and offset was obtained in 
relatively stationary states after a long time (2000 seconds), and it was found that offsets can 
have drastic impacts on the overall throughputs and, therefore, travel times on an aite1ial road. In 
(Daganzo and Geroliminis, 2008), a variational method was proposed to compute the 
approximate MFD for the relationship between long-time average flow-rates and densities in a 
1ing road with multiple signals, but the study did not provide definitions of stationary states, or 
explicit formulas for the MFD, or optimal signal settings. ill (Daganzo et al., 2011), the MFD in 
a double-ring network with turning movements was studied with heuristic double-bin 
approximations and cellular automaton simulations. In (Jin et al., 2013), steady or stationary 
states in a signalized double-ring network were defined as asymptotically pe1iodic traffic states 
within the framework of a network kinematic wave theory, and impacts of signal settings and 
turning movements on MFD in stationary states were simulated with the Cell Transmission 
Model (CTM) (Daganzo, 1995). ill (Muralidharan et al., 2015), the existence and stability of 
periodic solutions in a signalized road network with fixed-time control were studied with the 
point queue model, but queue spillbacks were not captured in this study. ill (Gan et al., 2015), 
stationaiy states in a double-ring network with turning movements, which is equivalent to a 
homogeneous, symmetric road network with turning movements, were defined and analyzed 
with a Poincare map: it was shown that stationary states exist, but may be unstable, and there 
exist multiple average flow-rates at one density. The study was enabled by the link queue model, 
which is an ordinary differential equation approximation of the kinematic wave model, uses the 
link fundamental diagram, and captures the queue spillback phenomenon, but allows for 
instantaneous vehicle and wave propagation. 



1.5 Summary 

In this chapter, we provided the literature review for arterial signal design and analysis 
methods as well as network traffic flow the01y. First, we reviewed existing signal design and 
analysis methods, including both analytical and simulation-based methods. Second, we reviewed 
network kinematic wave theory, including the cell transmission model (CTM), and the link 
transmission model (LTM). Third, we reviewed studies related to stationary states and 
macroscopic fundamental diagram. 

In the following we discuss limitations and improvements of the existing models and 
methods. (i) Existing methods for traffic signal analysis and design are either too simplistic to be 
physically realistic or too complicated to be mathematically tractable, and there still lacks a 
systematic method ( even) for mathematically analyzing and designing traffic signals for a large­
scale arterial network, even for "a one-way aite1ial"; (ii) Traffic dynainics in a signalized 
network ai·e still too complicated to be mathematically tractable; (iii) there exists no systematic 
studies on stationaiy states in signalized networks, and there exists no explicit closed-form 
formula of MFD; in paiiicular, signal settings have not been included as pai·ameters in MFD, 
even for simple networks. 

In this project, based on network kinematic wave theory, we will first rigorously define 
and discuss properties of stationary states in signalized networks, which are more complicated 
than those in freeway networks without signals. Then the MFD is f01mally defined as the 
relationship between network flow-rate and density, and we will de1ive closed-form f01mulas for 
macroscopic fundamental diagrams with signal settings as explicit parameters for different 
networks. Further we will provide analytical fo1mulas for optimal signal settings for different 
densities in different road networks. Finally we will develop numerical methods for finding 
stationary states, MFD, and optimal signal settings in lai·ge-scale arterial road networks. 

This chapter provides researchers and engineers a systematic view on the state-of-the-art 
traffic signal design and analysis as well as dynamic and stationai·y network traffic flow models, 
and can help them to appreciate the need and potential for developing more efficient and 
effective control and management schemes in urban networks in the future. 
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Chapter 2 
Problem formulation 

2.1 Network and signal settings 

We consider a road network, as illustrated in Figure 2.l(a), in which turning movements 
can be ignored. Thus we effectively consider an infinite street as illustrated in Figure 2.2(b). We 
label the roads consecutively by integer numbers: · · ·, -2, -1, 0, 1, 2, · · ·. For road J, its length is 

L1. Here we assume that the roads are periodic with a period of m , which is a natural number. 

That is, we assume that Lm+1 = LJ- We denote the location on the street by x , which increases in 

the traffic condition; for simplicity, we assume that road 1 starts at x = 0 and ends at x = L1 . 

Figure 2.1 Illustration of (a) A road network; (b) An infinite street with periodic roads; (c) A 
signalized ring road 

For a fixed, periodic traffic signal at the downstream boundary of road j , we denote its 

cycle length by 'I'j , green ratio by rr1, and (cumulative) offset by o1 = t11 - t11_1, where t11 is the 

cumulative offset at signal j. Without loss of generality, !10 = 0.i.e., signal O's green interval 
sta1ts at t = 0. 

The binary signal can be represented by 

t E i'I'j + !11 + [O,rrj'I'j) 
lfJ1(t) = H(rr1'I'j - (t - t11) mod 'I'j) = {1, (2.1) 

0, t E i'I'j + !11 + [rr1'I'j, 'I'j) 



where a mod b returns the remainder of a divided by b, and H(·) is the Heaviside function. 
Here a signal cycle is divided into green and red intervals, and we omit the yellow intervals. It is 

reasonable to assume that the signals are also m-periodical; i.e., ½+m = 'I'j, rrj+m = rrj, Oj+m = 
oi. 

Here we consider homogeneous roads: Li = L with 'I'j = T , Trj = rr, Oj = : T, where n 

and m are co-prime numbers. Hence !).j = j: T. There are four parameters for the signal 

settings: the cycle length, T, the green ratio, rr, and the two numbers for the offset, (m, n). In this 
case, the infinite street is equivalent to a ring road with m signals, as illustrated in Figure 2.l(c). 
Therefore the signal function can be written as 

t E ff+ j-T + [O,rrT); n {1, n 
m 

1/lj(t) = H ( rrT - (t - j;;T) mod T) = O, n 
t E ff+ j-T + [rrT, T). 

m 

2.2 The link transmission model 

We denote the cumulative flow at signalj by Gj(t), with G0 (0) = 0. Initially each link's 

density is constant at k 0 . It is reasonable to assume that traffic dynamics are also m-periodical; 

i.e., Oj+mCt) = gj(t), which is the flow-rate. Thus Gj+mCt) = Gj(t) - mk0 . 

We assume that all links have the same triangular fundamental diagram: 

q = Q(k) = min{uk, w(K - k)}, 

where u is the free-flow speed, -w the information propagation speed in congested traffic, and K 

the jam density. In addition, we denote the critical density by Kc, and the capacity by C: 

w 
Kc = --K, C = UKc ­

u + w 

Then from the link transmission model, we have the following m equations (j = 
1, · · ·, m) after a long time t : 

Gj(t) = 
f mi~ {cj-1 (t -;), Gj+l (t -;) + KL, Gj(ff + !1j) + (t - ff - !1j)c}, t E ff + !).j + (0, rrT] 

lciiT + !1i + rrT), t E ff+ !1j + (rrT, T] 

(2.2) 



Here G0 (t) = Gm(t) + mk0 , Gm+1 (t) = G1 (t) - mk0 . Equation (2.2) shows that the cumulative 

flows inside the green intervals are detennined by three waves, and those inside the red intervals 

are constant, since no vehicles can cross the intersection. 

In Equation (2.2), !:. equals vehicles' traverse time on a link, and!:.. equals the congestion 
u w 

building up time. We denote them by 

(2.3) 

L - = 02T = (l2 + a2 )T, (2.4) 
w 

where l 1 and l2 are integers, and av a 2 E [0,1). 

Hereafter we n01malize time with respect to T, and Equation (2.2) is written as 

Gj(t) = 
min {Gj_1(t- 01 ), Gj+1 (t- 02) + KL, Gj (i + j :) + (t- i - j;) c}, t E i + j !!.. 

m 
+ (0, rr] 

{Gj ( i + j : + rr) , t E i + j !!.. 
m 

+ ( rr, 1] 

(2.5) 



Chapter 3 

Approximate macroscopic fundamental diagrams 

3.1 Stationary states 

We consider the simple periodic states with a period of T as stationary states in the 

signalized ring road, where g(t + T) = g(t). Thus in stationary states we have 

G(t + T) = G(t) + q0 T, (3.1) 

where q0 E [O, rrC] is the average flow-rate during a cycle. According to Equation (2.5), the 

cumulative flow at the end of the green interval equals that at the start plus q0T ; i.e., 

Gj (i + j: + 7r) = Gj (i +j :) + qoT = min {cj-1 (i + j: + 7r - 01), Gj+l (i + j: + 7r -
02 ) + KL, Gj (i + j :) + rrTC }- (3.2) 

Clearly q0 :5 rrC, which is achieved when the boundary flow-rate equals the capacity during the 

whole green interval. 

A macroscopic fundamental diagram gives the following relationship: 

= Q(k0 ; L, T, rr, m, n), (3.3) q0 

which is a function of the density as well as the road and signal settings. We will derive 

approximate macroscopic fundamental diagrams from equation (3.2). 

3.2 Approximate macroscopic fundamental diagrams for (m, n) = (1, 0) 

When (m, n) = (1,0) , /j_j = 0 , and all signals are synchronized in a simultaneous 

progression. Denote G1 (t) = G(t). Then Gj(t) = G(t) - (j - l)k0T. As illustrated in Figure 

3.1, Equation (3.2) can be written as 

G(i + rr) = G(i) + q0 T 
= min{G(i + rr - 01 ) + k0L, G(i + rr - 02 ) + (K - k0 )L, G(i) + rrTC}. (

3
-
4
) 

We observe that q0 = rrC if and only if g(t) = C · H(rr - cf>(t)) and 

G(t) = G(O) + lJl(t)TC, 

where lJ1 ( t) = <I>( t) rr + min{ <t>( t ), rr}, <I>( t) = ltJ is the floor function, and <t>( t) = t - <I>( t) = 
t mod 1 is the remainder. Note that lJl(t) is the integral of the homogeneous signal function 
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f3(t). We have that rrt :5 lJl(t) :5 rr(t + 1 - rr), where the left equal sign holds when </>(t) = 0 
and the 1ight equal sign holds when </>(t) = rr. 

Thus Equation (3.4) can be written as 

rrCT = min{lJl(rr - 01 )TC + k0 L, lJl(rr - 02 ) TC + (K - k0 )L, rrTC}, 

Figure 3.1 Illustration of the signal settings in the case (m, n) = (1,0) 

which leads to lJl(rr - 01 )TC + k 0 L ~ rrTC and lJl(rr - 02 )TC + (K - k 0 )L ~ rrTC. Therefore, 
= rrC if and only if q0 

where 

TC l2 +min{;, 1} C 
k = K- - [rr-lJl(rr-0 )] = K------rr-

2 L 2 02 w· 

Fmther we have the following lemma. 

Lemma 3.1 k1 and k2 satisfy rrKc :5 k1 :5 Kc :5 k 2 :5 K - rr .£_ 
w 

Then we can approximate the macroscopic fundamental diagram by a trnpezoidal function. 



Theorem 3.2 The macroscopic fundamental diagram can be approximated by the following 
trapezoidal function 

qo = Q(ko; L, T, n, 1,1) :::::: min {ko, 1, K- ko} rrC. (3 .5) 
k1 K- kz 

Note that the macroscopic fundamental diagram is accurate when k 1 :5 k0 :5 k2 . The 

approximate macroscopic fundamental diagram is shown in Figure 3.2. 

Qo 

(' --------~ 

Figure 3.2 An approximate trapezoidal macroscopic fundamental diagram for (m, n) = (1,0) 

3.3 Approximate macroscopic fundamental diagrams for (m, n) = (2, 1 ) 

When (m, n) = (2,1) , !1j = J;T. G0 (t) = G2 (t) + 2k0 L, G3 (t) = G1 (t) - 2k0 L, and 

Equation (3.2) can be written as 

G1 ( i +; + n) = G1 ( i + ;) + q0 T = min { G2 ( i + ; + n - 01 ) + 2k0 L, G2 ( i +; + n - 02 ) + 

KL, G1 ( i + ;) + nTC}. (3.6) 

G2 (i + 1 + rr) = G2 (i + 1) + q0T = min{G1 (i + 1 + rr - 01 ), G1 (i + 1 + rr - 02 ) + (K -

2k0 )L, G2 (i + 1) + rrTC}. (3.7) 

We obse1ve that q0 = nC if and only if 

G1 (i + 1 + rr - 02 ) + (K - 2k0 )L ~ G2 (i + 1) + nTC. (3.11) 



Also note that G2 (i+1+t)=G2 (i+1)+4'(t)TC, and G1 (i+¼+t)=G1 (i+¼)+ 

4'(t)TC. Thus combining Equations (3.8) and (3.9), we obtain 

(3.12) 

Similarly, combining Equations (3 .10) and (3 .11 ), we obtain 

ko $ k2 = K - Tt rn - 4' ( rr - ¼ - 02)]. (3.13) 

When k1 $ k 2 , the approximate macroscopic fundamental diagram can be w1itten as in Equation 

(3.5): 

q0 = Q(k0 ; L, T, rr, 2,1) :::::: min {ko, 1, K-ko} rrC. (3.14) 
k1 K-kz 

Note that, however, k1 may not be smaller than k 2 . When k1 > k 2 , the maximum flow­

rate of q0 < rrC. More discussions are provided in Chapter 4. Also note that we cannot assume 

that the number of vehicles on each street is always k 0 . Further note that conditions in (3.12) and 

(3 .13) are both necessary and sufficient conditions, but the proof is omitted here. Intuitively this 

is due to the translational symmetry and unique information propagation direction. 

3.4 Approximate macroscopic fundamental diagrams for general (m, n) 

For more general networks with different (m, n), if the flow-rate equals the capacity 

during the green intervals at all intersections. Then we have 

Gj-1 (i + (j - 1): + rr +: - 01 ) = Gj-1 (i + (j - 1) :) + 4' ( rr +: - 01 ) TC, 

Gj+i ( i + (j + 1) : + rr - : - 02 ) = Gj+i (i + (j + 1) ;) + 4' ( rr - : - 02 ) TC. 

Thus Equation (3.2) can be written as (q0 = rrC) 

Gj ( i + j ;) + rrCT 

= min{Gj-i (i + (j-1) ;) + 4'(rr + :-01 )Tc,Gj+1 (i + (j + 1) ;) + KL 

+ 4' ( rr - : - 02 ) TC, Gj (i + j ;) + rrTC}. 

Thus we have the following 2m inequalities: (j = 1, ···, m) 

Gj-1 (i + (j-1) :) + 4'(rr + :- 01 )Tc ~ Gj (i + j :) + rrTC, (3.15) 

Gj+i (i + (j + 1) :) +KL+ 4' ( rr - : - 02 ) TC~ Gj (i + j :) + rrTC. (3.16) 

Combining them inequalities in (3.15), we have 

G0 (i)+m'¥(rr+ :-01 )Tc ~ Gm(i+n)+mrrTC. 

Since Gm(i + n) = Gm CO+ nrrTC = G0 (i) - mk0 L, we have 

ko ~ k1 = TLC [( 1 + :) rr - 4' ( rr +: - 01)] =; (1~)n:-:~n:+~81)_ (3.17) 



Combining the m inequalities in (3 .16), we have 

Since Gm+i (i + (m + 1) :) = Gm+i (i + :) + mrTC = G1 (i + :)-mk0 L + nrrTC, we have 

TC [( n) ( n )] c ( 1 -.!!. )rr-~( rr2-e2) k $.k =K-- 1-- rr-'¥ 1[---0 =K- m m . (3 .18) 0 2 2 L m m w 02 

Then when k1 $. k2 , which is equivalent to 

01 + '¥ ( rr + : - 01 ) + 02 + '¥ ( rr - : - 02 ) 2:: 2rr, 

the approximate macroscopic fundamental diagram can be written as: 

= Q(k0 ;L,T,rr,m,n) ~ min{k0 ,1, ,c- ko} rrC. (3 .19) q0 k1 K- k2 

Note that (3.5) and (3.14) are special cases of (3.19). Also note that such an approximate 

macroscopic fundamental diagram can be derived for periodical road with varying length Lj, 

free-flow speed uj, congestion wave speed wj, and offset aj. 

From Equation (3.19) we can see that the maximum flow-rate, refen-ed to as the 
network capacity, equals rrC when k1 $. k2 . However, when k1 > k2 , which is equivalent to 

(3 .20) 

the network capacity is smaller than rrC. fu this case, from Equation the capacity is reached 

when 

Gj (i + j: + 7r) = Gj (i + j :) + qoT = Gj-1 (i + j~ + 7r - 01) = Gj+l (i + j~ + 7r - 02) + Kl. 

(3.21) 

This equation will be solved in Chapter 4. 



Chapter 4 

Analysis of the impacts of signal settings 

In this chapter, we analyze the impacts of signal settings on the network flow-rate q0 . 

4.1 Impacts of the cycle length 

For (m,n) = (1,1) we analyze the impacts of the cycle length on the network flow-rate. 
k K-k 

We denote Q1 (k0 ; T, rr) = ....!!..rrC , and Q2(k0 ; T, rr) = --0 rrC. Then we have the following 
k1 K-k1 

properties for them: 

rruk0 , 0 < a 1 :5 rr, 
1. When 1 = 0 and O < a1 < 1, Q1 ( k0 ; T, rr ) = k When 11 2::: 1 and O :5 1 { a1u o, Tr< U1 < 1 . 

11 
+a1 rruk0 , 0 :5 a 1 :5 rr, 

a1 < 1, Q1 (k0 ; T, rr) = n:l~ :a; Thus Q1 (k0 ; T, rr) is continuous in 01 ; 
{ -

1-uk0, rr < a1 < 1. 
11 +1 

it retains the global minimum rruk0 when O < 01 = a 1 :5 rr , reaches the global 

maximum uk0 when 01 = l1 , and reaches local minima 11 
+n: uk0 when 01 = l1 + rr. 

11 +1 

rr(K - k 0 )w, 0 < a 2 :5 rr, 
2. When 12 = 0 and O < a 2 < 1, Q2 (k0 ;T,rr) = { ( k) l When l2 2::: 1 a 2 K - 0 w, rr < a 2 < . 

lz+az rr(K - k0 )w, 0 < a 2 :5 rr, 
and O :5 a 2 < 1, Q2 (k0 ;T,rr) = n:lt;; Thus Q2 (k0 ;T,rr) is 

{ ..L..2. (K - k0)w, rr < a 2 < 1. 
12 +1 

continuous in 02 ; it retains the global minimum 1lW(K - k0 ) when O < 02 = a 2 :5 rr , 
reaches the global maximum u(K - k0) when 02 = 12 , and reaches local minima 
12 

+11: u(K - k0 ) when 02 = 12 + rr. 
12+1 

Since 01 = ..!:.. and 02 = .!:.... we can have the following properties for Q1 (k0 ; T, rr) and 
UT wT' 

Q2 (k0; T, rr). 

Lemma 4.1 Q1 (k0 ; T, rr) and Q2 (k0 ; T, rr) are functions of T , as shown in Figure 4.1. 

1. Q1 (k0; T, rr) is continuous in T ; it retains the global minimum rruk0 when 
1L . 1L 

T 2::: --, reaches the global maximum uk0 when T = - - , and reaches local 
11:U 1 1 U 

. . -u k 
O 

h en T = --L In . 1 w h - T < --11 +n: 1 1 L rmmma w . part1cu ar, en L < 
11+1 l1+11:u u - - n:u ' 

Q1 (k0 ; T, rr) decreases in T: Q1 (k0 ; T, rr) = koL_ 
T 

2. Q2 (k0; T, rr) is continuous in T ; it retains the global minimum 1lW(K - k0 ) 
1 L . 1 L 

when T 2::: --, reaches the global maxrmum u(K - k0) when T = - - , and 
n:W 1 2 w 
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reaches local minima lz+rru(K - k 0) when T = - 1
-~. In pa1t icular, when 

G+l G+rrw 

!:. :5 T :5 !.!:., Q2 (k0; T, rr) decreases in T: Qz(k0 ; T, rr) = (K- ko)L_ 
w rrw T 

Figure 4.1 Flow-cycle length relation: (a) Q1 (k0 ; T, rr) (b) Q2 (k0 ; T, rr) 

From (3.5) we can see that the flow-rate Q(k0 ; T, rr) decreases in k1 and increases in k2 . In 
paiiicular, we have the following Lemma. 



Lemma 4.2 In the following five region for k0 , Q(k0; T, rr) vaiies with k1 E [rrKc, Kc] and 

k2 E [ Kc, K - rr ;] as follows: 

1. When k0 E (0, rrKc]; i.e., when traffic is very sparse, Q(k0 ; T, rr) = Q1 (k0 ; T, rr) for 
k1 E [rrKc, Kc], which decreases in k1 and is independent of k2 . In this case, the 

global maximum flow-rate is uk0 when T = 2.!'.., and the global minimum flow-rate is 
l1 u 

11 
rruk0 when T 2:: --. 

"lrU 

2. When k0 E [rrKc, Kc]; i.e., when traffic is sparse, Q(k0 ; T, rr) = 
min{Q1 (k0 ; T, rr), rrC}, which is first constant for k1 E [rrKc, k0 ] , then decreases for 
k1 E (k0 , Kc] , and is independent of k2 . In this case, the global maximum flow-rate is 

rrC when T = 2-~, and the global minimum flow-rate is rruk0 when T 2:: ~~-
~ u 1rU 

3. When k 0 = Kc; i.e., when traffic is c1itical, Q(k0 ; T, rr) = rrC, which is constant for 
any k1 and k2 . 

4. When k0 E ( Kc, K - rr;]; i.e., when traffic is dense, Q(k0 ; T, rr) = 
min{Q2 (k0 ; T, rr), rrC}, which is first increasing for k2 E [Kc, k0], then constant for 

k2 E ( k0, K - rr;] , and is independent of k1 . In this case, the global maximum flow-

rate is rrC when T = -l1 .!:.., and the global minimum flow-rate is rrw(K - k0) when 
z W 

T>!...!:.. 
-1rw· 

5. When k0 E ( K - rr;, K]; i.e. , when traffic is very dense, Q(k0 ; T, rr) = Q2 (k0 ; T, rr), 

which is first increasing in k2 , and is independent of k1 . In this case, the global 

maximum flow-rate is rrC when T = 2.!:., and the global minimum flow-rate is 
l2 w 

1 L 
rrw(K - k 0 ) when T 2:: --. 

1rW 

From Lemmas 4.1 and 4.2, we can then determine Q(k0 ; T, rr) for any cycle length T and 

the effective green ratio rr, and a density k0 . 

4.2 Impacts of the offset 

For general (m, n), from the property ofll'(t) we have that 

(1 - rr)(01 + 02) + 2rr 2:: 01 + q, ( rr +: - 01 ) + 02 + q, ( rr - : - 02 ) 

2:: (1- rr)(01 + 02 ) + 2rr2 
. 

Thus, if 01 + 02 2:: 2rr, or if T :5 LKc' then the approximate macroscopic fundamental diagram in 
21r 

(3.19) applies. Thus the necessary condition for the network capacity to be smaller than rrC is 



\Jl(0) O+ w(Tr-0) 

~-~--~------~---o O 1T l l +1r 2 2+1r 

(a) (b) 

2 - 11' ················· ... ·····-····· .. ···· ............ . ~---
1 ········ ··•··········•················ ... 

1T 
7r 

21r - l 

-------''----------..;._---01 - 1+..!!. ..!!. 1r+..!!.. 1+..!!. -----,-----------02 
m m m m -;;i 1- ;;-; l --!;;+1r 2- ~ 

-1+11+1r ~: +tr tu 

(c) (d) 

From Figure 4.2 for the prope1iies of 4'(0) and 0 + 4'(0) , we can see that both are 

increasing fimctions in 0. Thus we have the following lemma. 

Lemma 4.3. The sufficient and necessary condition for 01 + 4' ( rr +: - 01 ) + 02 + 

4' (rr _ 2!;, _ 02 ) < 2rr is 01 < !!:.. , 02 < 1 - 2!:., and 01 + 02 < rr. That is, if either 01 2:: !!:.. or 
m m m m 

02 2:: 1 - : or 01 + 02 2:: rr, then 01 + 4' ( rr + : - 01 ) + 02 + 4' ( rr - : - 02 ) 2:: 2rr, and the 

approximate macroscopic fimdamental diagram in (3.19) applies. 

Figure 4.2 Illustrations of 4'(0), 0 + 4'(rr - 0), 01 _ !!;_ + 4' (rr + .!!:. - 01 ) , and 02 + !!:.. + 
m m m 

4'(rr - .!!:. - 02) 
m 



,

r. 
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n-.!!..--
(3) 

-----' ""' ,u , .. ,,, 
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Figure 4.3 Four regions when the network capacity is smaller than rrC 

When the network capacity is smaller than rrC, or equivalently, 01 + 4' ( rr + : - 01 ) + 

02 + 4' (rr - : - 02 ) < 2rr, Equation (3.21) can be written as 

which is equivalent to 

According to Lemma 4.3, when the network capacity is smaller than rrC , there are four regions of 
(0i, 02) , as illustrated in Figure 4.3. In the following we find the network capacity q* and the 
conesponding density k* for the four regions: 

. n n n n n 
1. In region 1, rr - 1 + - :5 01 < - and rr - - :5 02 < 1 - - . Thus rr < rr + - - 01 :5 1 m m m m m 

and - 1 + rr < rr - .!!:. - 02 :5 0, and Equation ( 4.2) can be written as 
m 

Hence Gm(i + n + rr) = G0 (i + rr) , which leads to Gm(i + rr) + nq*T = Gm(i + rr) + 
mk*L, or equivalently 

(4.4) 

In addition, Gj+l (i + (j + l): + rr) = Gj (i + j : + rr) = Gj+1 (i + (j + l) :) + KL, 

which leads to q*T = KL, or equivalently 



(4.5) 

From Equation (4.4) we further have 

(4.6) 

. n n n n 
2. In region 2, rr - 1 + - $ 01 < - and O $ 02 < rr - - . Thus rr < rr + - - 01 $ 1 and m m m m 

0 < rr - .!!. - 02 $ rr - .!!., and Equation (4.2) can be written as 
m m 

Hence Gm(i + n + rr) = G0 (i + rr), which leads to Gm(i + rr) + nq*T = Gm(i + rr) + 
mk*L, or equivalently 

(4.8) 

In addition, Gj+l (i + (j + 1)~ + rr) = Gj (i + j : +TC)= Gj+l (i + (j + 1)~) + (TC - : -

02 )CT + KL, which leads to q*T = ( TC - ~ - 02) CT+ KL, or equivalently 

KL n ( n ) q* = - +(TC- --02 )C= TC- -+01 C. (4.9) 
T m m 

From Equation (4.8) we further have 

(4.10) 

. n n n n 
3. In region 3, 0 $ 01 < rr - 1 + - and rr - - $ 02 < 1 - -. Thus 1 < rr + - - 01 S rr + m m m m 

.!!. and -1 + rr < rr _ .!!, _ 02 $ 0, and Equation (4.2) can be written as 
m m 

Gi (i + j;;+ 1) = Gj- l (i + (j - l );;:+ 1) + (rr+;; - 1 - 81 )CT = Gi+1 (i + (j + 1);;) + KL. (4.11) 

Hence Gm(i + n + rr) = G0 (i + rr) + m(rr + .!!, _ 1 - 01)CT, which leads to Gm(i + 
m 

rr) + nq*T = Gm(i + rr) + mk*L + m(rr + .!!, _ 1- 01 )CT, or equivalently 
m 

(4.12) 

In addition, Gj+i (i + (i + 1): + 1) = Gj (i + j : + 1) + (rr +: - 1- 01 )CT = 

Gj+i (i + (i + 1) :) +KL+ (rr +: - 1 - 01 )CT, which leads to q*T =KL+ (n +: -
1 - 01 )CT, or equivalently 



1eL n ( n ) q* = - + (rr +-- 1- 01)C = rr +- - 1 + 02 C. (4.13) 
T m m 

From Equation (4.12) we fmther have 

~ (rr+~-1 +0 2 ) -(rr~-1-0 1 ) _ m m m k (4.14) * - 0 0 K. 
1+ 2 

. n n n n 
4. In region 4, 0 :5 01 < rr - 1 + - and 0 :5 02 < rr - - . Thus 1 < rr + - - 01 :5 rr + -m m m m 

and 0 < rr - ~ - 02 :5 rr - ~ , and Equation ( 4.2) can be written as 
m m 

GJ (i + j~ + 1) = G1_1 (i + (j - 1)~+ 1) + (rr+~ - 1 - 01)CT = G/+t (i + (j + 1)~) + (n - ~ - 02)CT +,cl. (4.15) 

Hence Gm(i + n + rr) = G0 (i + rr) + m(rr + ~ - 1 - 01 )CT , which leads to Gm(i + 
m 

rr) + nq*T = Gm(i + rr) + mk*L + m(rr + ,!!:. _ 1 - 01 )CT, or equivalently 
m 

(4.16) 

In addition, Gj+l (i + (j + 1): + 1) = Gj (i + j: + 1) + (rr + ~ - 1 - 01)CT = 

Gj+l (i + (j + 1) :) + (rr + ~ -1- 01)CT + (rr - : - 02 )CT + KL, which leads to q*T = 
(2rr - l)CT, or equivalently 

q* = (2rr - l)C. (4.17) 

From Equation ( 4.16) we fmther have 

01 +(1-rr)(l-2~) 
k. = 0 0 m K. (4.18) 

1+ 2 

Note that regions (2) and ( 4) are removed when -rr - .!!:. :5 0 , and regions (3) and ( 4) are removed 
m 

when rr - 1 + .!!:. :5 0. In addition, in the four regions, the approximate macroscopic fundamental 
m 

diagi·am can be written as 

= Q(k0 ; L, T, 7r, m, n) ~ min {ko, 1e- k0
} q •. (4.19) q0 k . IC-k. 



Chapter 5 
Design of traffic signals 

From Equation (3 .19), when 01 + qi ( rr + : - 01) + 02 + qi ( rr - : - 02 ) 2::: 2rr , the 

network flow-rate q0 is approximately a trapezoidal function of the density k0 . According to 

Little's law (Little, 1961), the average travel time of each vehicle equals 

koL ~ koL (5.1) - ~ . {ko K-ko} ' 
qo mm k ,1,K-kz rrC 

1 

which is a function of both density and signal settings. In the design of traffic signals, the 

objective is to minimize the average travel time at a given density, or equivalently to maximize 

the average flow-rate: 

. k 0 L . {ko l K-ko} C argmm- = argmaxq0 ~ argmaxmm -, ,-- rr . (5.2) 
T,rr,m,n qo T,rr,m,n T,rr,m,n k1 K-kz 

5.1 Design of green ratio 

From Equation (5.2), we can see that the larger green ratio, rr, the better. However, the 

green ratio of one movement conflicts with that of its competing movement. In general, rr has to 

be determined by considering the demands of different movements. This is beyond the topic of 

this research. Here we assume that rr E (0,1) is given and attempt to find optimal cycle length 

and offset. 

5.2 Design of cycle length 

Here we solve the optimal cycle length for the special case with (m, n) = (1,0). In this 

case, the optimization problem (5.2) becomes 

(5.3) 

Thus we have the following results: 

1. For very sparse traffic when k 0 :5 rrKc, the optimal 0; satisfies rr0; + qi(rr - 0;) = rr; 
i.e., </>(0;) = 0. Con-espondingly the optimal cycle length is T* = <1>(~~) ~-



2. For sparse traffic when TrKc < k0 < Kc , the optimal 0; satisfies k1 :5 k0 ; i.e., rr -

'P(rr - 0i) :5 ko 0i, which has multiple solutions. In particular, </>(0i) = 0 is an optimal 
Kc 

solution. 
3. For critical traffic when k0 = Kc , the optimal 0; and 0;_ satisfies 0; + 'P(rr - 0;) ~ rr 

and 0;_ + 'P(rr - 0;_) ~ rr, which are true for any 0; and 0;_. Therefore, any Twill lead to 
the optimal solution. 

4. For dense traffic when Kc< k0 < ,c - rr!:.., the optimal 0;_ satisfies k2 ~ k0 ; i.e., rr -
w 

'P(rr - 0;_) :5 (1e-~o)w 0;, which has multiple solutions. In particular, </>(0;_) is an optimal 

solution. 

5. For very dense traffic when k0 ~ ,c - rr!:..., the optimal 0; satisfies rr0; + 'P(rr - 0;) = 
w 

1 
rr; i.e., </>(0;) = 0. Correspondingly the optimal cycle length is T* = ( *) !:... 

<I> 82 w 

However, in reality due to limited reaction times and bounded acceleration rates of drivers 
and vehicles, there exists a start-up lost time, 8. The total effective green time for a cycle with 
two phases is only (T - 28). We assume that the effective green ratio is rr0 , which allocates the 
total effective green time to the studied road. Then the effective green time is rr T = (T - 28)rr0 . 

Therefore we have the following effective green ratio 

rr = ( 1 - ~) rr0 , (5.4) 

and (5.3) can be w1itten as 

(5.5) 

Thus we can see that when T is very small for a stop sign, the network flow-rate becomes very 
low, and we should avoid very small cycle length. 

When 8 « l , rr ~ rr0 , and (5.5) can be approximated by 

(5.5) 

Then we have the following theorem. 

Theorem 5.1 The optimal cycle length conside1ing the start-up lost time is given in the 
following: 

1. For very sparse traffic, T = ..!:...., and the maximum flow-rate is q* ~ u k 0 :5 
U 0 1 

( 1 - ~:) rr0 C, for which there exist multiple optimal cycle lengths: T* = <1>(~~) ~ with 

</>(0;) = 0. 



2. For sparse traffic, T =...!:_,and the optimal 0{ is dete1mined by ~~ *) ko - 1 -
u01 rro-\JI rro-01 Kc 

2ou . k 0 L 
-0;, which leads to T* = -+ 28. 

L 7roC 

3. For critical traffic, the maximum flow-rate q* = max ( 1 - ;:) rrOC. Thus T* = oo. 

4. For dense traffic, T = L , and the optimal 0;_ is determined by ~; e·) (,c-ko)w = 
W 9 z lTo-\JI lTo- 2 C 

1 - 20w 0;_, which leads to T* = (,c-ko)L + 28. 
L rr0 C 

5. For very dense traffic, the maximum flow-rate is q* ~ w(K - k 0) $ ( 1 - ;:) rr0 C, for 
1 

which there exist multiple optimal cycle lengths: T* = -(.)!:.. with ¢(0;_) = 0. 
<I> 02 w 

If we denote the congestion level by 

X = min{uk0 ,C} (5.6) 
min{ C,(IC-ko)W }' 

which is the ratio of stationary demand over supply, then we have the following corollary 

from Theorem 5 .1. 

Corollary 5.2 The optimal cycle length at different congestion level considering the start-up lost 

time is given in the following: 

1. For very sparse traffic with X E [0, rr0 ) , T = Le , and the maximum flow-rate is q* ~ 
u 1 

u k0 $ (1 -
20

) rr0 C, for which there exist multiple optimal cycle lengths: T* = (
1 

*) !:.. r <l>~u 

with ¢(0;) = 0. 

2. For sparse traffic with XE [rrO, 1), T = ...!:...., and the optimal 0; is determined by 
u 9 1 

0~ ko 1 2ou 0* h" h 1 d r · XL 2 5: "'( 0. ) = - - 1c ea s to = - + u. i, w 
1l"o-..,.. lTo- 1 ICc L 1l"oU 

3. For critical traffic with X = 1, the maximum flow-rate q* = max ( 1 - ;:) rr0 C. Thus 

T* = oo. 

4. For dense traffic withX E (1,2:..J , T = L , and the optimal 0;_ is dete1mined by 
lTo W 92 

9i (,c-ko)w = 1 - w 0* hi h l d t T* = ~ 2 s: *) 
20 

21 w c ea s o + u. 
rr0 -\JI ( rr0 - 0 C L rr0 w 2 

5. For very dense traffic withX E (2:.., oo), the maximum flow-rate is q* ~ w(K - k0) $ 
lTo 

( 1 - ;:) rrOC, for which there exist multiple optimal cycle lengths: T* = <1>(~;);; with 

</>(0;_) = 0. 

When X < 1, traditionally Webster's fo1mula has been used to find the optimal cycle length: 

even though the above formula is substantially different from Webster's optimal cycle length 

formula, it is consistent in principle with the latter, as it increases in both the congestion level 

and the lost time. But here we also obtain a simple formula for dense and very dense traffic with 



queue spillback when X > 1, and the optimal cycle length still increases in the lost time but 

decreases in the congestion level. 

5.3 Design of offset 

Here we assume that 01 + \JI ( rr + : - 01 ) + 02 + \JI ( rr - : - 02 ) 2:: 2rr. With offset, 

Equation ( 5. 5) can be written as 

Theorem 5.3 The optimal cycle length, T*, and offset, ;: , considering the strut-up lost time are 

given in the following: 

1. For very sparse traffic, T = ...!:...., and the maximum flow-rate is q* ~ 11 k 0 :5 
u01 

( 1 - ;:) rr0 C, for which there exist multiple optimal cycle lengths and offsets: T* = 
l • L With "'(0*) = ~ 

<1>(0i)+ : . u 'f' 1 m• · 

2. For sparse traffic, T = u~i' and the optimal 0i and offset : •. ru·e determined by 

0i ko 1 2ou0* h. h 1 ds T * koL 2~ n•) ( n• ) = - - i, w lC ea to = ( n•) + u. ( 1~ rro-\jl rro~-0i Kc L 1~ rroC m m m 

3. For critical traffic, the maximum flow-rate q* = max ( 1 - ;:) rr0 C . Thus T* = oo_ 

4. For dense traffic, T = ...!:...., and the optimal 0; and offset~ ru·e determined by 
w02 m • 

02 (,c-k0 )w 28w * h. h l ds * (,c-k0 )L ~ 
n•) ( n• •) = 1--02,w lC ea toT =( n•) +2u. ( 1- rro-\jl rro--0 c L 1- rroC m• m,., 2 m * 

5. For ve1y dense traffic, the maximum flow-rate is q* ~ w( K - k0 ) :5 ( 1 - ~:) rr0 C, for 

which there exist multiple optimal cycle lengths and offsets: T * = 1 
n• L with 

<1>(02)+1-m• w 

<P( 0;) = 1 - ::. 

For a homogeneous road, there is a certain level of equivalence between the cycle length and 
the offset: given an offset, we can find the optimal cycle length; and given a cycle length in a 

range, we can find the optimal cycle length. However, for an inhomogeneous road, one can 

choose different offsets for different signals, so that all signals can have the same cycle length. 



Chapter 6 
Conclusions and Future Research 

In this report, we applied the link transmission model to f 01mulate and analyze traffic 
dynamics in a signalized arterial network. In particular we (1) analytically derived macroscopic 
fundamental diagrams for stationary traffic patterns with different network topologies, road 
conditions, driving behaviors, and signal settings; (2) quantified congestion mitigation effects of 
different signal settings, including cycle lengths, green splits, and offsets; (3) formulated an 
optimization problem with the network flow-rate as performance measure to find optimal signal 
control parameters under certain demand levels, and (4) developed a set of simple decision­
support tools for arterial network improvement. 

For the homogeneous network without turning movements, this research successfully fills 
the gap between methods based on delay formulas and those based on traffic simulation by 
presenting a new method that is both physically realistic and mathematically tractable. There are 
three particular contributions in this study. First, we obtained a simple link transmission model 
for the boundary flows on a signalized ring road, which forms the foundation for solving and 
analyzing stationary states. Second, we derived an explicit approximate macroscopic 
fundamental diagram, in which the average flow-rate is a function of both traffic density and 
signal settings. Third, we presented fo1mulas for optimal cycle lengths under five levels of 
congestion with a strut-up lost time. 

In the future, we will be interested in applying the method to study an inhomogenoeus 
road network, in which different roads have different lengths, speed limits, and offsets. We will 
also be interested in studying the congestion mitigation effect of speed limits and road lengths. In 
addition, we will also examine the impacts of different strut-up lost time caused by different 
queues. 
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