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Abstract  

Experimental research has shown that rocking shallow foundations have the potential to develop 

large earthquake-induced lateral displacements with acceptable permanent deformations. 

Therefore, this alternative seismic design philosophy has the potential to become an economical 

earthquake protection solution for bridges. 

This study developed displacement-based analysis (DBA) guidelines for the seismic 

design of ordinary bridges with rocking shallow foundations. The guidelines cover the case of 

single rocking bents but especially address the system level design of bridges with columns on 

rocking foundations. For the single rocking bent model, the proposed method is based on the 

study by Deng et al. [2014], but with equivalent viscous damping ratios calibrated from 

nonlinear response history analysis (NRHA) of bridge columns on rocking foundations. The 

method also addresses the design of single bents that combine rocking of shallow foundations 

and plastic hinging at the top of the columns. For the system level design, guidelines on how to 

consider the interaction between the rocking bents and the abutments are developed. 

The seismic design concept of using rocking shallow foundations combined with column-

top plastic hinging is validated at the system by redesigning two existing Caltrans bridges at a 

site of very high seismic hazard which is different than the sites of the built bridges. Using three-

dimensional nonlinear response history analysis, it is shown that the redesigned bridges sustain 

the design earthquake with less than 6% drift ratio, less than 1.5% column plastic rotation, and 

less than 0.5% residual drift ratio. For both bridges this level of response corresponds to limited 

structural damage ensuring prompt post-earthquake functionality of the bridges. 

The proposed system level design guidelines are validated using the case studies of the 

two bridges described above by comparing NRHA and DBA results. Finally, both the results of 

NRHA and DBA are compared with the results of commonly used response spectrum analysis. 
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1 Introduction 

1.1 BACKGROUND AND MOTIVATION 

Traditional seismic design of new bridges is based on inelastic behavior of the columns (plastic 

hinging), while damage below ground is to be avoided [Caltrans 2010; European Committee for 

Standardization (CEN) 2005]. Such designs are susceptible to considerable damage and 

permanent lateral displacements that may require costly and time-consuming repairs (and 

perhaps even demolition) after a seismic event. For example, residual drifts of bridge columns 

resulted in demolition and replacement of over 100 bridges after the 1995 Kobe earthquake 

[Jeong et al. 2008]. 

Recent research and earthquake case histories in the 1995 Kobe earthquake have shown 

that controlled foundation uplift and/or controlled soil inelastic action, can reduce residual 

structural rotation, displacement demand, and the collapse potential [Gazetas et al. 2007; Gajan 

and Kutter 2008; Paolucci et al. 2008; Pecker et al. 2013]. Allowance of foundation rocking may 

also result in economic savings through reduced footing size and/or avoidance of the need for 

piles or tie-down anchors. 

Foundation rocking can be used to dissipate hysteretic energy without column damage 

while providing a re-centering tendency [Pecker 2006; Anastasopoulos et al. 2010]. 

Anastasopoulos et al. [2010] presented a numerical study of a bridge column for which they 

weakened the foundation so that the soil capacity is mobilized prior to damaging the base of the 

column. Deng et al. [2012a] tested in centrifuge a simplified 2-span bridge model with columns 

on rocking foundations whereas Antonellis and Panagiotou [2014] conducted numerical 

simulations to address the system level seismic response of complete multi-span reinforced 

concrete bridges with foundations allowed to uplift. Both studies combined the rocking 
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foundation at the base of the column with a pin connection between the column and the 

overlying deck to allow the bridge column to remain nominally elastic. 

The merits and controlling parameters of rocking foundations have been extensively 

studied experimentally using small-scale 1g [Drosos et al. 2012; Anastasopoulos et al. 2012], 

large-scale 1g [Negro et al. 2000], and centrifuge [Gajan and Kutter 2008; Gajan and Kutter 

2009; Deng and Kutter 2012; Hakhamaneshi et al. 201X] pseudo-static cyclic tests, as well as 

small-scale 1-g [Anastasopoulos et al. 2013], large-scale 1g [Shirato et al. 2008; Antonellis et al. 

2015] and centrifuge [Ugalde et al. 2007; Hakhamaneshi et al. 2012; Deng et al. 2012a; Loli et 

al. 2014] shake-table tests for competent soil conditions. In addition, performance of rocking 

foundations on poor soil conditions have been investigated using concrete pads below the footing 

[Deng and Kutter 2012], footings rocking on unattached piles [Allmond and Kutter 2014; 

Antonellis and Panagiotou 2014], or shallow soil improvement by means of compaction for 

sandy soils [Kokalli et al. 2015; Tsatsis and Anastasopoulos 2015] or deep soil mixing for clayey 

soils [Khosravi et al. 2015]. 

Gajan and Kutter [2008] demonstrated that rocking shallow foundations exhibit a reliably 

predicted, non-deteriorated moment-rotation behavior, and that re-centering, energy dissipation, 

and settlement behavior of rocking footings are well correlated to the critical contact area ratio, 

ρac = Ac/Af, where Af is the area of the footing and Ac is the minimum soil-footing contact area 

that supports the vertical load during rocking. Gajan and Kutter [2009] showed that foundations 

with normalized moment-to-shear ratio [M/(V×L)] larger than 1, as in most practical cases of 

bridge columns, will have very small sliding and the deformation response of the foundation will 

mainly be in terms of rotation and settlement. Deng and Kutter [2012] and Deng et al. [2012a] 

showed that foundations with ρac < 0.13 can develop rotations up to 5% with small residual 

rotations and settlements less than 1% of the footing dimension. More recently, Antonellis et al. 

[2015] demonstrated that rocking foundations can be detailed to sustain peak rotation of 6% with 

no structural damage and residual rotation of 0.3%. 

As convincing evidence indicates that rocking foundations can be an efficient component 

of a seismic force resisting system, new and practical performance-based procedures for design 

of rocking foundations for bridges are needed. 

Within this perspective, displacement-based analysis (DBA) procedures [Kowalsky et al. 

1994; Chopra and Goel 2001; Blandon and Priestley 2005; Jara and Casas 2006; Dwairi and 
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Kowalsky 2006; Dwairi et al. 2007; Priestley et al. 2007], are an attractive framework as rocking 

foundations may coexist in a bridge system with other seismic resisting mechanisms (e.g., 

column plastic hinges at the top of the columns, passive soil resistance at the abutments, seismic 

isolation and damping devices) that have been already studied. In the DBA approach, the 

displacement demand of a structure is predicted using the design linear displacement spectrum 

and an equivalent linear viscoelastic single-degree-of-freedom (SDOF) model that represents the 

structural system. Previous studies have developed displacement-based analysis guidelines for 

single-column [Paolucci et al. 2013; Deng et al. 2014], or multi-span [Ni et al. 2013] reinforced 

concrete bridges. 

This study develops guidelines for the seismic design of ordinary bridges with columns 

on rocking shallow foundations. Two existing Caltrans bridges are hypothetically redesigned 

using rocking shallow foundations, combined with plastic hinging at the top of the columns. The 

bridges are hypothetically located in a site at San Bernardino, California of very high seismic 

hazard (1.6 ft/s slope of the design displacement spectrum up to a period of 5 seconds). The 

design objectives for the redesigned bridges are minimal structural damage and prompt post-

earthquake functionality. The seismic design guidelines developed here are based on 

displacement-based analysis and cover both the component level design of rocking bents as well 

as the system level design of bridges for excitation in either the transverse or the longitudinal 

direction of the bridge. The developed designs are validated by three-dimensional nonlinear 

response history analysis of the two bridge case studies. The NRHA analyses results are also 

used to validate the DBA method at the bridge system level. 

1.2 REPORT OUTLINE 

This report contains a total of 9 chapters. Chapter 2 provides a review of displacement-based 

seismic analysis based on SDOF idealization. Chapter 3 presents a calibrated, based on physical 

tests, beam-on-nonlinear-Winkler-foundation (BNWF) modeling scheme for rocking shallow 

foundations. Chapter 4 presents the development of the displacement-based analysis (DBA) 

method for single elastic flexible column on rocking shallow foundation. The method is based on 

the Deng et al. [2014] approach, but with equivalent viscous damping determined from nonlinear 

response history analyses (NRHA) of the calibrated BNWF models. Chapter 5 describes the 
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DBA guidelines for the case of a single flexible column with rocking foundation at the base and 

plastic hinging at the top. Chapter 6 presents the DBA method at the bridge level. In Chapter 7, 

two built bridges of Caltrans are redesigned with rocking shallow foundations based on the DBA 

method. In addition, three-dimensional NRHA are conducted to evaluate the proposed design 

method. Chapter 8 compares the NRHA results of the two redesigned bridges with those 

obtained from a response spectrum analysis. Finally, Chapter 9 presents the conclusions of this 

study. 
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2 Review of Displacement-Based Seismic Analysis 

2.1 FORMULATION OF THE METHOD 

The displacement-based seismic analysis method is illustrated with reference to Figure 2.1, 

which considers a SDOF representation of a fixed-base reinforced-concrete bridge column; 

nevertheless, the basic fundamentals apply to many types of earthquake resisting mechanisms 

and types of structures. The method characterizes the structure by the secant stiffness, Ke, at peak 

displacement, Δm [Fig. 2.1(b)], and a level of equivalent viscous damping, ξeq, that is 

representative of the combined elastic damping and hysteretic energy due to inelastic response 

[Fig. 2.1(c)]. Using these equivalent linear structure properties, the peak displacement demand is 

determined, using design linear displacement spectra reduced for the expected level of energy 

absorption [Fig. 2.1(d)]. 

The basic steps of the displacement-based method for the considered example can be 

summarized as follows: 

1. Obtain the design linear displacement spectrum for 5% damping at the considered 

site. 

2. Conduct a preliminary design of the reinforced concrete column and determine the 

force – displacement backbone. 

3. Assume a peak lateral displacement (Δm). 

4. For the assumed peak displacement demand, compute the secant stiffness at peak 

displacement (Κe) and the corresponding period (Te) based on the effective mass of 

the structure (me) that participates in the fundamental vibration mode: 
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Figure 2.1 Fundamentals of displacement-based analysis method; (a) fixed-base bridge pier and 
SDOF idealization; (b) force – displacement backbone and secant stiffness to peak 
displacement; (c) equivalent viscous damping – ductility curves; and (d) linear design 
displacement spectra. 
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(2.1)  

(2.2)  

5. Based on the peak displacement (Δm) and the yield displacement of the structure (Δy), 

estimate the displacement ductility demand (μΔ = Δm/Δy) and the corresponding 

equivalent viscous damping (ξeq). 
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6. Determine the reduction factor to the 5% damped linear displacement spectrum (RD) 

due to the increased viscous damping: 
α

D
eq

0.07R
0.02 ξ
 

    

(2.3)  

where α = 0.5 for a site with expected “normal” broadband motions [European 

Committee for Standardization (CEN) 1998], or α = 0.25 for a site where forward 

directivity velocity pulse motions might be expected [Priestley 2003]. 

7. Update the peak displacement demand prediction: 

 m D eΔ R Sd T ,0.05  (2.4) 

8. Repeat steps 3 to 7 until the displacement demand computed at step 7 is close enough 

to the one used in step 3, e.g. within 2%. 

9. Evaluate if the predicted displacement demand is satisfactory, or if the structure needs 

to be redesigned. 

The described design procedure requires knowledge of the force – displacement and the 

equivalent viscous damping – ductility relationships for the calculation of the effective elastic 

stiffness and viscous damping, respectively. While determination of the force – displacement 

relationship is straightforward for a given earthquake resisting mechanism, discussion on the 

calculation of the equivalent viscous damping is required. 

2.2 EQUIVALENT VISCOUS DAMPING 

The equivalent viscous damping used in the displacement-based analysis is representative of the 

combined elastic damping and hysteretic energy dissipated during inelastic response: 

eq el hysξ ξ ξ  (2.5) 

The components of Eqn. (2.5) are discussed next. 

2.2.1 Hysteretic Damping 

The equivalent viscous damping due to hysteretic energy dissipation may be computed from the 

energy absorbed by the hysteretic steady-state cyclic response at a given displacement. This 

approach was proposed by Jacobsen [1930] for determining the peak displacement demand of a 

hysteretic system under steady-state harmonic forced vibration. Initial work on the displacement-
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based analysis of inelastic structures under earthquake excitation [Rosenblueth and Herrera 

1964; Kowalsky 1994] has also used the Jacobsen [1930] approach due to its simplicity and the 

ease with which the relations between the hysteretic shape and the equivalent damping are 

obtained. 

Chopra and Goel [2001] showed that this approach may seriously overestimate the 

effective viscous damping in earthquake applications, as in these cases, the assumptions of 

Jacobsen [1930] are not met. More specifically, earthquakes tend to have varied frequency 

content rather than a single harmonic. In addition, in many cases the peak displacement occurs 

before the transient response damps out. As an extreme example a nonlinear elastic and a 

nonlinear inelastic system, with identical monotonic force – displacement backbones may 

develop the same peak displacement demand under a single strong velocity pulse despite of the 

second system dissipating energy upon unloading. Lastly, the response of a yielding system to an 

earthquake is typically asymmetric, and contains cycles of smaller and larger amplitude. 

Determining the equivalent viscous damping based on the maximum single-sided displacement 

will overestimate the average energy dissipation through all cycles that take place prior to 

reaching the maximum demand [Gulkan and Sozen 1974]. 

As a result, Grant et al. [2005], Dwairi et al. [2007] and Priestley et al. [2007] showed 

that correction factors should be applied to the area-based damping for use in displacement-

based analysis, and they developed a set of correction factors required to make the peak drift in 

an earthquake event, as predicted by DBA, match the peak drift predicted by nonlinear response 

history analyses. The matching of drift demand was done in an average sense for a set of 

earthquake ground motions, and they found that the correction factors were different for different 

shapes of hysteresis loops. Figure 2.2 plots the area-based correction factors as summarized by 

Priestley et al. [2007] for a variety of hysteretic rules. 

2.2.2 Elastic Damping 

The first component of equivalent viscous damping of Eqn. (2.5) is an elastic component that is 

commonly used in nonlinear response history analysis (NRHA) to model damping not captured 

by the hysteretic rule (due to its initial linear response), foundation radiation damping and 

damping from interaction between structural and nonstructural components. As DBA is 

calibrated to match peak drift predicted by NRHA, the selection of elastic damping in DBA is 
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Figure 2.2 Correction factors to be applied to area-based equivalent viscous damping ratio for a 
variety of hysteretic rules: FS = flag shaped (unbonded post-tensioned structures); TT = 
Takeda thin (reinforced concrete column or wall); TF = Takeda fat (reinforced concrete 
frames); BI = bilinear inelastic with 20% post-yield stiffness (isolation systems); RO = 
Ramberg Osgood (steel structures); EPP = elastic-perfectly-plastic (friction sliders) 
[Priestley et al. 2007]. 

dependent on whether the elastic damping in the NRHA is initial or tangent stiffness 

proportional. 

Wang et al. [1998] analyzed experiments of seismic soil-pile interaction and showed that 

initial stiffness damping produces large and spurious damping forces not observed 

experimentally, whereas Priestley and Grant [2005] argued that hysteretic models are calibrated 

to match the full energy dissipation after the onset of yielding. Hence, a tangent stiffness 

proportional damping may be more appropriate as the damping coefficient subsequent to onset of 

yielding is reduced. 

In any of the two cases however, the elastic damping in DBA is associated to the secant 

stiffness to peak displacement whereas the elastic damping in NRHA is associated to the 

constant initial stiffness (initial stiffness proportional damping), or to the varying tangent 

stiffness (tangent stiffness proportional damping). Hence, the elastic damping used in NRHA 

cannot be directly added to the equivalent hysteretic damping to obtain the equivalent viscous 

damping for DBA. In addition, determining the elastic damping component of DBA based on the 

total energy absorbed by the viscous dashpot in NRHA may not be appropriate for reasons 
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similar to those described in the case of hysteretic damping and appropriate adjustment factors 

are needed [Grant et al. 2005]. 

2.2.2 Equivalent Viscous Damping for Selected Hysteretic Rules 

This subsection lists the equivalent viscous damping (ξeq) – displacement ductility (μΔ) 

relationships as obtained from Priestley et al. [2007] for selected hysteretic rules as rocking 

foundations may coexist in a bridge system with other seismic resisting mechanisms (e.g., 

column plastic hinges at the top of the columns, passive soil resistance at the abutments, seismic 

isolation and damping devices). These hysteretic rules are: Takeda thin (TT), applicable to 

reinforced concrete columns; Elastic-perfectly-plastic (EPP), applicable to friction sliders and to 

abutments passive resistance if multiplied by a factor of 0.5, as the two abutments combined, 

dissipate energy during the first and third quadrant of a complete cycle; and Bilinear inelastic 

with 20% post-yield stiffness (BI), applicable to some isolation systems. It is noted that Eqn, 

(2.6) are applicable to cases with tangent stiffness proportional elastic damping of 5%. For 

different elastic damping or for initial stiffness proportional damping, Eqn. (2.7) should be used 

together with Tables 2.1 and 2.2. 

Δ
eq _TT

Δ

μ 1ξ 0.05 0.444
μ π

 
   

 

Δ
eq _EPP

Δ

μ 1ξ 0.05 0.670
μ π

 
   

 

Δ
eq _BI

Δ

μ 1ξ 0.05 0.519
μ π

 
   

 

λ
eq Δ el b d

Δ e

1 1ξ μ ξ α 1 1
μ (T c )

  
      

  

(2.6a) 

(2.6b) 

(2.6c) 

(2.7)  

Table 2.1 Equivalent viscous damping coefficients for hysteretic damping component using Eqn. (2.7) 
[Grant et al. 2005]. 

Model a b c d 
TT 0.215 0.642 0.824 6.444 

EPP 0.224 0.336 -0.002 0.250 
BI 0.262 0.655 0.813 4.890 
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Table 2.2 Equivalent viscous damping coefficient (λ) for elastic damping component using Eqn. (2.7) 
[Grant et al. 2005]. 

Model 
TT  
EPP  
BI  

Initial Stiffness Tangent Stiffness 
0.340 0.378 
0.127 -0.341 
0.193 -0.808 

2.3 CONSIDERATION OF P-Δ EFFECTS FOR REINFORCED CONCRETE SYSTEMS 

The presented in Section 2.1 displacement-based analysis method does not directly account for 

P-Δ effects. These are typically quantified by the instability ratio (θP-Δ): 

 m

m
P Δ Δ

P Δθ
Μ


 (2.8)  

which is the fraction of the base moment at the predicted displacement demand (Δm) that is due 

to the P-Δ moment. Priestley et al. [2007] recommend that P-Δ effects for reinforced concrete 

systems can be safely ignored if θP-Δ ≤ 0.10. For θP-Δ ˃ 0.10, but smaller than the suggested limit 

case of 0.33, they recommend that the predicted displacement demand from DBA should be 

increased as follows: 

 m _P Δ P Δ mΔ 1 0.5 θ Δ     (2.9)  

2.4 INCORPORATING ROCKING SHALLOW FOUNDATIONS IN DISPLACEMENT-
BASED SEISMIC ANALYSIS 

The proposed, in this study, displacement-based guidelines for the seismic analysis of bridges 

with rocking shallow foundations adopt concepts presented in the Deng et al. [2014] study. 

These concepts, reviewed in this section, are: (i) a multilinear moment – rotation hysteretic 

model for rocking foundations that allows determination of the secant rotational stiffness at peak 

footing rotation as well as the area-based hysteretic damping ratio under a complete symmetric 

hysteresis loop; and (ii) a combination rule for integrating radiation damping, hysteretic damping 

due to rocking-induced soil inelasticity, and column elastic damping for the case of flexible 

elastic cantilever columns on rocking foundations. 
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2.4.1 Multilinear Hysteretic Model 

Figure 2.3(a,b) shows the schematic of a flexible elastic cantilever bridge column on a rocking 

shallow foundation as well as the corresponding multilinear hysteretic model proposed by Deng 

et al. [2014]. The proposed multilinear hysteretic model was developed by analyzing a large set 

of pseudo-static cyclic centrifuge and large-scale 1g tests of rocking shallow foundations. The 

hysteretic model is constructed using a trilinear virgin loading and reloading backbone and a 

linear unloading. Based on their analysis, Deng et al. [2014] showed that during virgin loading 

and reloading from zero moment, a rocking footing will reach 50% of the rocking moment 

capacity at a rotation of approximately 1/600 rad (0.5·hf = 1/600 rad), while the full rocking 

moment capacity is reached at a rotation of 0.012 rad (bf = 0.012 rad). Assuming that the total 

vertical load at the base of the footing (Wf_b) and the footing length in the direction of excitation 

(Lf) are known, the strength and energy dissipation (i.e. slope of linear unloading) characteristics 

of the rocking footing can be determined based on the critical contact area ratio (ρac) defined as: 

c
ac

f

Aρ
A

 (2.10)  

where Af is the plan area of the footing and Ac is the critical contact area, defined as the area 

required to support Wf_b when the soil’s ultimate bearing capacity (qc) is fully mobilized under 

rocking. Deng and Kutter [2012] showed that Ac, and hence ρac, can be determined using 

conventional bearing capacity theory for the reduced due to uplifting soil-footing contact area. 

Note that for a rectangular critical contact area as in Figure 2.3(a) 

c c
ac

f f

A Lρ
A L

  (2.11)  

where Lc is termed critical contact length. 

Having calculated ρac, the rocking moment capacity (Mfc) of the footing is derived from 

static analysis [Gajan and Kutter 2008] as 

 f _b f
fc ac

W L
M 1 ρ

2


   (2.12)  

while the residual rotation (i.e. rotation at zero moment), zf, after unloading from a peak footing 

rotation of θf is determined as 

 f d fz 1 R θ   (2.13)  

where the displacement re-centering ratio (Rd) is correlated to ρac as follows: 
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d
ac

1R
2.6 ρ 1


 

(2.14)  

Note that as ρac decreases, meaning that less soil-footing contact area is required to 

support the total vertical load and thus less rocking-induced soil inelasticity is induced, Rd 

increases also, resulting in improved re-centering (smaller residual rotation) and less energy 

dissipation. 

Figure 2.4 compares the multilinear hysteretic model with experimental results from a 

pseudo-static cyclic centrifuge test [Deng et al. 2014], and a dynamic large-scale 1g test 

[Antonellis et al. 2015] at both small and large rotations. It is noted that while the centrifuge test 

was included in the development of the hysteretic model, the large-scale 1g test was conducted 

afterwards. It is concluded that the discussed hysteretic model provides a very good 

approximation of the actual cyclic moment – rotation envelope as well as of the hysteretic energy 

dissipated through rocking. 

2.4.2 Combination of Elastic and Hysteretic Damping 

Deng et al. [2014] determine the equivalent viscous damping ratio (ξeq) due to the combined 

effects of radiation damping (ξrad), hysteretic damping due to rocking (ξf_hys) and column elastic 

damping (ξc) [Figure 2.5(a)] based on an SDOF model supported by in-series pairs of spring and 

dashpots, where each damping source is associated to the corresponding flexibility source 

[Figure 2.5(b, c)]. This approach is described in Wang et al. [1998] and Priestley and Grant 

[2005], and is used to avoid spurious damping forces that would be produced by placing 

radiation and/or column elastic dashpots in parallel to the spring representing the hysteretic 

response of the rocking foundation. 

Figure 2.6 shows the decomposition of the multilinear rocking foundation hysteretic 

model into an elastic rocking element modeling the initial elastic rocking response (before 

footing uplifting and soil yielding) and radiation damping, and into a plastic rocking element 

modeling the rocking-induced hysteretic damping. 

The rotational stiffness of the elastic rocking element (Kf_50) is 

f _50 fcK 300 M  (2.15)  
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Figure 2.3 (a) Schematic of a flexible elastic cantilever bridge column on a rocking shallow foundation; and (b) Deng et al. [2014] multilinear 
hysteretic model for rocking shallow foundations. 
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Figure 2.4 Comparison of the Deng et al. [2014] multilinear hysteretic model for rocking shallow foundations with (a) a pseudo-static cyclic 
centrifuge test [Deng et al. 2014], and (b, c) a dynamic large-scale 1g test [Antonellis et al. 2015] at small and large rotations. 
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Figure 2.5 (a) Schematic of a flexible elastic cantilever bridge column on rocking shallow foundation; 
(b) spring-dashpot representation of the system; (c) decomposition of multi-linear hysteretic 
model of the rocking foundation into an elastic and a plastic spring-dashpot element; (d) 
integration of the in-series spring-dashpot elements into a single equivalent visco-elastic 
element. 

Assuming that the footing rotation (θf) is larger than bf (i.e. 0.012 rad), the plastic rocking 

element is substituted with an equivalent linear viscoelastic element that has the same secant 

stiffness to peak rotation (Kf_pl) 

fc
f _ pl

f f

MK
θ h




(2.16)  

and hysteretic damping ratio (ξf_hys) based on the area of the hysteresis loop 

f
f _hys

ac f

b1 3ξ 4
2π 2.6 ρ 1 θ

 
   

  
(2.17)  

With the stiffness and damping properties of each spring-dashpot pair known, the secant 

period (Τe) and equivalent viscous damping (ξeq) of the flexible elastic cantilever column on 

rocking foundation are determined by in-series integration as 

2 2 2
e c f _50 f _plT T T T  

2 2 2
f _50 f _ plc

eq c rad f _hys
e e e

T TTξ ξ ξ ξ
T T T
     

       
     

(2.18)  

(2.19)  
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(a) Multilinear hysteretic model
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(b) Linear visco-elastic element for the elastic 
response of the rocking foundation: Kf_50 + ξrad

(d) Equivalent linear visco-elastic substitute element for the nonlinear 
inelastic response of the rocking foundation: Kf_pl + ξf_hys
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Figure 2.6 Decomposition of (a) the multilinear hysteretic response to (b) a linear visco-elastic rocking element for radiation damping and (c) a 
plastic rocking element for hysteretic damping; and (d) substitute equivalent linear visco-elastic element of the plastic rocking 
element. 
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3 Beam-on-Nonlinear-Winkler-Foundation Model 

3.1 INTRODUCTION 

In this Chapter, four physical experimental tests on sand are used to calibrate a beam-on-

nonlinear-Winkler-foundation (BNWF) modeling scheme for rocking shallow foundations on 

sand. The BNWF model is used subsequently in the proposed displacement-based analysis 

method (Chapter 4), as well as for the three dimensional Nonlinear Response History Analysis 

(NRHA) of two bridge systems with columns on rocking foundations (Chapter 7). 

3.2 EXPERIMENTAL DATA USED IN THIS STUDY 

Four rocking shallow foundation tests are considered here to calibrate the BNWF model. The 

considered tests were selected to meet the following conditions: (i) they are rocking-dominated 

footings; (ii) they cover a reasonably wide range of rocking-induced soil inelasticity; (iii) their 

response is not affected by sand falling from the backfill under the gapping side of the footing as 

such a mechanism cannot be modeled by BNWF. 

Table 3.1 summarizes the main properties of the tests. Three of the tests are slow-cyclic 

displacement-controlled centrifuge tests of a rigid shear wall supported on a surface footing 

[Hakhamaneshi et al. 2014; Liu et al. 2015]. The fourth test is a dynamic 1g test of a 1:3 scale 

reinforced-concrete bridge pier supported on a shallow embedded footing tested at the UCSD 

shake table [Antonellis et al. 2015]. The models were founded on a dense to very dense sand (DR 

= 80% or 90%), and had a normalized moment-to-shear ratio Mfc/(V×Lf) larger than 1, indicating 

a rocking-dominated response and small sliding [Gajan and Kutter 2009]. The critical contact 

area ratio of the rocking foundations (ρac) varied between 8.8% and 25%; hence, it spanned a 

range from very limited to moderate soil inelasticity. The centrifuge tests used rectangular 

footings with length to width ratio between 0.64 and 1.75, while the 1g test used a square 

footing. 
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It is noted that from the Antonellis et al. [2015] experimental dataset only the response of 

the aligned specimen during Day 1 has been modeled, in which, significant sand falling has not 

been observed due to the apparent cohesion in the backfill soil (except for the last ground motion 

in the loading protocol). Day 2 results have been affected more by this mechanism, due to the 

reduced apparent cohesion of the backfill soil; hence, they have not been considered here. Also, 

Day 3 results have not been modeled. Albeit cast concrete blocks around the footings have 

eliminated the sand falling mechanism, the experimentally observed partial interlocking of the 

footing and the concrete blocks would require a more elaborate model that is beyond this study’s 

scope. 
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Table 3.1 Rocking shallow foundation tests used for BNWF calibration (dimensional quantities are reported in model scale). 
Test No. 1 2 3 4 
Reference Hakhamaneshi (2014) Hakhamaneshi (2014) Liu et al. (2015) Antonellis et al. (2015)2 

Test type Centrifuge (1:351) Centrifuge (1:351) Centrifuge (1:301) 1g (1:31) 
Loading type Slow cyclic Slow cyclic Slow cyclic Dynamic 
Idealized superstructure type Rigid shear wall Rigid shear wall Rigid shear wall SDOF with flexible column 
Soil relative density, DR (%) 80 80 90 90 
Total load, Wf_b (kip) 0.886 0.639 0.408 65.6 
Footing length, Lf (in)2 4.33 5.91 7 60 
Footing length, Bf (in)3 6.69 3.54 4 60 
Embedment depth, Df (in) 0 0 0 26 
Critical contact length, Lc (in) 1.08 1.44 1.03 5.31 
Critical contact area ratio, ρac = Lc/Lf 0.24 0.244 0.147 0.088 
Moment capacity, Mfc (kip-in) 1.44 1.43 1.22 2027 
Moment-to-shear ratio, Mfc/(V×Lf) 2.0 1.4 1.7 2.0 
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1Length scale factor; 2Only the response of the aligned specimen in Day 1 is considered; 3Footing side dimension in the loading direction; 4Footing side dimension 
normal to the loading direction. 



 

 

    

    

        

    

   

       

   

      

       

   

     

      

         

         

      

       

     

   

       

  

     

     

      

       

      

       

        

  

  

3.3 BNWF MODEL DESCRIPTION AND CALIBRATION  

3.3.1 Description of Model 

Figure 3.1(a) shows the side view of a bridge pier supported on a rocking shallow foundation, as 

well as the corresponding BNWF model [e.g. Harden and Hutchinson 2009; Gajan et al. 2010; 

Antonellis and Panagiotou 2013] within the Open System for Earthquake Engineering 

Simulation (OpenSees) [Mazzoni et al. 2014] platform. In this approach the soil – foundation 

interaction is modeled with an array of uncoupled nonlinear springs, namely QzSimple1, 

TzSimple1 and PySimple1, that have been originally developed by Boulanger et al. [1999] to 

model the end bearing, passive and skin friction resistance against a pile. More specifically, the 

foundation is supported on a bed of vertical nonlinear gapping springs (QzSimple1) that model 

the contact behavior of the footing with the underneath soil, and determine the vertical and 

rotational (in the absence of embedment) load – deformation response of the foundation. 

TzSimple1 springs model the sliding behavior at the base of the footing, while PySimple1 springs 

model the passive soil resistance against the vertical sides of the footing. The three spring types 

are internally similar in nature, and consist of an elastic spring in series with a plastic spring and 

a drag-closure spring [Figure 3.1(b)]. The three internal elements capture the “far-field” elastic 

response, the “near-field” inelastic response, and the soil-footing gap opening and closure, 

respectively. In addition, a viscous dashpot is used in parallel with the elastic element to model 

radiation damping [Wang et al. 1998]. Figure 3.2 shows the typical cyclic force – displacement 

relationship of the springs for the case of a sandy soil. 

It is noted that the QzSimple1 material implementation in OpenSees [Boulanger 2000] 

assumes as a hard-wired parameter in the computer code, a minimum tensile stiffness that 

overrides the tension capacity of the spring. Although the stiffness is small (i.e. 10-3 of the secant 

compressive stiffness at 50% of the compression capacity), it can produce significant tensile 

forces for footings with small ρac during large rotations that affect the rocking footing moment 

capacity [Liu et al. 2015]. To minimize the unrealistic tensile forces, the QzSimple1 material was 

modified herein by further reducing the tensile stiffness by a factor of 106. Note that this change 

is not reflected in the online version of OpenSees. 
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Stiff Element

Stiff Element

Nonlinear Beam-
Column Elements

Linear Elastic Element

Vertical Contact Spring (QzSimple1)
Sliding Spring (TzSimple1)
Passive Spring (PySimple1)

LcLc Lm(a)

(b) [after Gajan et al. 2008]

Figure 3.1 (a) Two-dimensional generic beam-on-nonlinear-Winkler-foundation modeling for a column 
supported on a rocking shallow foundation; (b) components of the QzSimple1 zero-length 
spring used to model the vertical soil-footing contact behavior. 

upliftsettlement

Figure 3.2 Typical cyclic nonlinear force-displacement relationships for sandy soil: (a) vertical force – 
displacement response (QzSimple1); (b) lateral passive response (PySimple1); and (c) 
lateral sliding response (TzSimple1). 
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3.3.2 Calibration of the BNWF model 

Stiffness and capacity distribution of vertical springs 

The BNWF model response is governed by the stiffness and strength properties of the vertical 

springs. Harden and Hutchinson [2009] have proposed a parabolic capacity distribution, which is 

based on experiments of footings on sand under pure vertical loading that well exceeds working 

level, and the use of higher stiffness springs near the footing edges in order to match the Gazetas 

[1991] global vertical and rotational elastic stiffness (Figure 3.3). Here we determine a different 

stiffness and strength distribution that results in more accurate responses of rocking shallow 

footings with moderate to limited soil inelasticity (i.e. ρac smaller than approximately 0.2). 

In the proposed scheme, the footing is divided to two identical end regions with length 

equal to the critical contact length of the rocking foundation (Lc), and to a middle region (Lm); 

see Figure 3.1(a) and Table 3.2. In each region, the bearing capacity and the elastic stiffness per 

tributary area are constant. First, the critical contact length (Lc) and the corresponding bearing 

capacity (qc) are determined by conventional bearing capacity equations for the reduced soil – 

footing contact geometry [Deng and Kutter 2012]. Based on the critical contact area ratio, ρac = 

Ac/A (= Lc/Lf for a rectangular critical contact area), the capacity ratio (qratio = qc/qm) and stiffness 

ratio (kratio = kc/km) determine the bearing capacity magnitude distribution and the elastic stiffness 

relative distribution of the vertical springs, respectively. Lastly, the elastic stiffness magnitude of 

the springs is determined iteratively by monotonic pushover analysis, so that the foundation 

moment at a rotation of 1/600 radians equals to 50% of the foundation moment capacity [Mfc = 

0.5·Wf_b·(1-ρac)]. 

Figure 3.3 Graphical representation of Harden and Hutchinson [2009] modeling scheme for the 
stiffness and capacity distribution of the vertical Winkler springs. 
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Table 3.2 Modeling scheme considered in this study for the elastic stiffness and capacity distribution of 
the vertical Winkler springs. 
ρac qratio = qc / qm kratio = kc / km qc (ksf) kc (ksf/ft) 

≥ 0.25 
= 0.147 
≤ 0.088 

1 
2 
2 

1 
1 
5 

Wf_b / Ac 
Iteratively until 0.5×Mfc 

is reached at 1/600 rad. 

A qratio ≥ 1, oppositely to what is suggested by Harden and Hutchinson [2009] modeling 

approach, underestimates the capacity of the foundation against a purely vertical load. However, 

a qratio ≥ 1 provides a way to promote soil inelasticity in the middle region and thus, to counter-

act the bias of BNWF models to underestimate cyclic moment – rotation energy dissipation due 

to their limitations. These limitations are: 

(i) Soil yielding underneath the foundation occurs due to concentration of normal 

and shear stresses at the reduced, due to uplifting, soil – footing contact area. This 

coupling is not included in the BNWF model, where soil yielding is only due to 

normal stresses. 

(ii) Bearing failure of a foundation rocking on the critical contact area pushes some 

loose soil back under the gapping footing side, which will yield upon the 

unloading and reloading of the foundation in the opposite direction. In the BNWF 

model, the vertical springs at the base of the footing are uncoupled; hence, the 

response of a spring under the gapping side of the footing is not affected by the 

response of the nearby plastically deforming spring. 

Lastly, it was observed that BNWF models with ρac < 0.15 experienced a slow 

mobilization of the theoretical foundation moment capacity if a uniform stiffness distribution 

was used. For that purpose, a kratio > 1 is used in these cases so that the foundation moment 

capacity is mobilized at an appropriate footing rotation by promoting uplifting at the middle 

region through transfer of vertical forces to the stiffer and stronger (since also, qratio > 1) springs 

of the end region. 

Horizontal springs 

The initial stiffness of the horizontal sliding and passive springs is determined based on the 

corresponding global elastic stiffness from Gazetas [1991]. The capacity of the sliding spring is 

calculated as the vertical load acting at the base of the footing multiplied by the frictional 
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coefficient, which is taken as the tangent of the constant volume friction angle. The capacity of 

the passive spring is determined by conventional passive earth pressure theory. 

3.4 VALIDATION OF BNWF MODEL 

The considered physical tests have been modeled in OpenSees based on the described BNWF 

approach. Dashpots have been included in the BNWF model of test 4, and were determined from 

Gazetas [1991] elastic solutions for the initial fundamental period of the specimen. It is noted 

that the dashpot coefficient of the individual vertical springs were determined assuming a 

uniform distribution of the global vertical dashpot coefficient. 

3.4.1 Slow Cyclic Centrifuge Tests 

Figures 3.4 and 3.5 compare the experimental response of tests 1 and 2, with that obtained from 

the numerical simulations. Both tests have a critical contact area ratio equal to 0.25. The 

comparison is made in terms of (i) cyclic moment – rotation hysteresis loops, (ii) moment – 

rotation energy dissipation ratio versus rotation amplitude, (iii) settlement – rotation response; 

and (iv) settlement - cumulative rotation behavior. In the latter comparison, cumulative rotation 

is defined as the sum of the peaks of the rotation time history that exceed a threshold elastic 

rotation of 1 mrad [Deng et al. 2012a]. Based on part (a) of the figures, the numerical models are 

observed to approximate well the experimental cyclic moment – rotation response of the rocking 

foundations, at least for the packets of loading with large rotation amplitudes that are visible. 

Part (d) of the figures, plots the ratio of the hysteretic energy dissipation of the BNWF model to 

that of the physical tests, for loading packets of different rotation amplitudes, as well as for every 

cycle within each packet. For example, test 1 contained 7 loading packets of increasing single-

sided rotation amplitude with 3 cycles at each of them. For rotations larger than 0.01 rad, the 

hysteretic energy dissipation of the BNWF model is shown to be approximately 65 to 85% of 

that in the experiments, with the ratio being fairly constant with increased cycling at the same 

amplitude. Foundation settlement response of the BNWF models compares reasonably with the 

experimental data up to the 6th loading packet of test 1 (rotation amplitude of 0.042 rad and 

cumulative rotation of 0.4 rad) and the 5th loading packet of test 2 (rotation amplitude of 0.04 rad 

and cumulative rotation of 0.4 rad). Upon continued cyclic rocking, BNWF models accumulate 
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significant settlement not observed in the experiments, with the permanent settlement at the end 

of the tests being overestimated by approximately 100%. 

Figure 3.6 shows the comparison of the BNWF model against test 3 (ρac ≈ 0.15) in terms 

of cyclic moment versus rotation, and hysteretic energy dissipation versus rotation. Observations 

are similar as for the previous two tests. 

3.4.2 Dynamic 1g Test 

Figures 3.7 to 3.12 compare the BNWF model response against the experimental data of test 4 

for the each of the 6 ground motions used in the loading protocol. Comparison is made in terms 

of response histories of selected parameters (e.g., mass horizontal acceleration, column drift 

ratio, foundation moment, rotation and settlement), as well as in terms of cyclic moment – 

rotation and cyclic settlement – rotation response. In general, the computed response agrees well 

with the experimental response except for the last ground motion, where sand falling from the 

backfill under the gapping side of the footing at large rotations, results in increased energy 

dissipation, significant footing residual rotation, and incremental permanent footing uplifting. 

Figure 3.13 provides a comparison summary for the peak footing rotation demand, 

hysteretic moment – rotation energy dissipation, residual footing rotation and settlement. BNWF 

model captures peak footing rotation demand within 20%, while consistently under-predicts 

hysteretic energy dissipation and residual footing settlement by a factor of 1.3. 

3.5 SUMMARY 

This chapter has shown that the behavior of shallow foundations in centrifuge and 1g shake table 

experiments can be adequately modeled using BNWF models for rocking-dominated 

foundations. As a good approximation, the foundations will be rocking dominated if the 

normalized moment-to-shear ratio [Mfc/(V×Lf)] is greater than 1. An improved BNWF model for 

rocking foundations is described. Having demonstrated in this chapter the adequacy of BNWF 

models for NRHA, the BNWF will be further used as a tool for testing the validity of the 

simplified displacement-based analysis method for bridges on rocking foundations. 
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Figure 3.4 Comparison of BNWF model against Test No. 1 [Hakhamaneshi et al. 2014]: (a) moment – 
rotation; (b) settlement – rotation; (c) settlement – cumulative rotation; and (d) energy 
dissipation due to moment – rotation hysteresis. 
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Figure 3.5 Comparison of BNWF model against Test No. 2 [Hakhamaneshi et al. 2014]: (a) moment – 
rotation; (b) settlement – rotation; (c) settlement – cumulative rotation; and (d) energy 
dissipation due to moment – rotation hysteresis. 
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Figure 3.7 Comparison of BNWF model against Test No. 4 [Antonellis et al. 2014] for the Gilroy #1 (100%) motion: (a) mass lateral 
acceleration; (b) mass vertical acceleration; (c) foundation moment; (d) column drift ratio; (e) foundation rotation; and (f) foundation 
settlement response histories; (g) foundation moment –rotation; and (h) foundation settlement – rotation responses. 
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Figure 3.8 Comparison of BNWF model against Test No. 4 [Antonellis et al. 2014] for the Corralitos (80%) motion: (a) mass lateral 
acceleration; (b) mass vertical acceleration; (c) foundation moment; (d) column drift ratio; (e) foundation rotation; and (f) foundation 
settlement response histories; (g) foundation moment –rotation; and (h) foundation settlement – rotation responses. 
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Figure 3.9 Comparison of BNWF model against Test No. 4 [Antonellis et al. 2014] for the El Centro #6 (110%) motion: (a) mass lateral 
acceleration; (b) mass vertical acceleration; (c) foundation moment; (d) column drift ratio; (e) foundation rotation; and (f) foundation 
settlement response histories; (g) foundation moment –rotation; and (h) foundation settlement – rotation responses. 
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Figure 3.10 Comparison of BNWF model against Test No. 4 [Antonellis et al. 2014] for the Pacoima Dam (80%) motion: (a) mass lateral 
acceleration; (b) mass vertical acceleration; (c) foundation moment; (d) column drift ratio; (e) foundation rotation; and (f) foundation 
settlement response histories; (g) foundation moment –rotation; and (h) foundation settlement – rotation responses. 
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Figure 3.11 Comparison of BNWF model against Test No. 4 [Antonellis et al. 2014] for the Takatori (50%) motion: (a) mass lateral acceleration; 
(b) mass vertical acceleration; (c) foundation moment; (d) column drift ratio; (e) foundation rotation; and (f) foundation settlement 
response histories; (g) foundation moment –rotation; and (h) foundation settlement – rotation responses. 
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Figure 3.12 Comparison of BNWF model against Test No. 4 [Antonellis et al. 2014] for the Takatori (100%) motion: (a) mass lateral 
acceleration; (b) mass vertical acceleration; (c) foundation moment; (d) column drift ratio; (e) foundation rotation; and (f) foundation 
settlement response histories; (g) foundation moment –rotation; and (h) foundation settlement – rotation responses. 
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Figure 3.13 Comparison summary between BNWF model and Test No. 4 [Antonellis et al. 2014], 
excluding the Takatori (100%) motion: (a) peak footing rotation demand; (b) energy 
dissipation due to moment – rotation hysteresis; (c) residual footing rotation; and (d) 
residual footing settlement. 
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4 Displacement-Based Analysis for Single Elastic 
Cantilever Column Supported on Rocking 
Foundation 

4.1 INTRODUCTION 

This chapter develops and validates a displacement-based analysis method of a single elastic 

cantilever column supported on rocking foundation as shown in Figure 2.5(a). The method 

extends the Deng et al. [2014] formulation, summarized in Section 2.4, by determining the 

following: (i) the appropriate equivalent viscous damping due to rocking-induced soil 

inelasticity; and (ii) the P-Δ effects. For that purpose, nonlinear response history analyses 

(NRHA) are conducted for the calibrated BNWF models presented in Chapter 3. It is noted that 

the Deng et al. [2014] combination rule for integrating the rocking foundation hysteretic 

damping with the elastic radiation and column damping is maintained; appropriate adjustment 

factors, similar to those proposed Grant et al. [2005] for other hysteretic rules, are not studied 

here; the proposed elastic damping values are small and are not expected to significantly impact 

the design. 

Firstly, the ground motion sets used, and the studied bridge pier characteristics are 

presented in Sections 4.2 and 4.3, respectively. Secondly, the BNWF models (Section 4.4) and 

their static monotonic and cyclic response (Section 4.5) is briefly discussed. Thirdly, the NRHA 

results are used to determine the correction factor that needs to be applied against the Deng et al. 

[2014] area-based hysteretic damping expressions so that the drift demand predicted by the 

displacement-based analysis method matches that of the NRHA (Section 4.6). Alternative to that 

approach, a purely BNWF-derived equivalent viscous damping expression is presented in 
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Section 4.7. Lastly, the importance of P-Δ effects is discussed in Section 4.8, and the proposed 

displacement-based analysis method is summarized in Section 4.9. 

4.2 GROUND MOTIONS 

4.2.1 Set of Broadband Ground Motions Representing Mw 7 Event 

The first set of ground motions used (Table 4.1), consisted of 40 broadband records selected so that 

the mean response spectrum of the fault-normal components matched the median spectrum computed 

from Boore and Atkinson [2008] in the period range of 0-5 seconds, for a magnitude 7 (Mw 7) strike-

slip earthquake at a site with distance of 10 km from the fault rupture plane and with Vs30 equal to 

820 ft/s [Baker et al. 2011]. Figure 4.1 shows the linear acceleration and displacement response 

spectra for each of the 40 fault-normal (FN) and fault-parallel (FP) components of the ground 

motions, as well as the mean spectra, for a damping ratio of 2%. For the numerical analyses 

conducted, the fault-normal and fault-parallel components of each ground motion record were 

applied separately to the bridge pier models with amplitude scale factors of 1/3, 1/2, 2/3, 1, 1.5, 2 and 

3. 

4.2.2 Set of Near-Fault Pulse-Like Ground Motions 

Table 4.2 lists the 40 historical near-fault pulse-like ground motion records, studied by Lu and 

Panagiotou [2014], which were used in this study. The motions are rotated to the fault-normal (FN) 

and fault-parallel (FP) directions. The 40 ground motion records come from 17 earthquakes with 

magnitude (Mw) varying from 6.3 to 7.9; the recorded peak ground velocity (PGV) of the FN 

horizontal component of the 40 records ranges between 19.3 and 72.8 in/s, with a mean value of 41.7 

cm/s. The specific earthquakes and their associated records are numbered in ascending order of 

earthquake magnitude. For each motion, the first two predominant pulses are identified by wavelet 

analysis (the CPEV_EN method as described in Lu and Panagiotou 2014) and the pulse period, 

acceleration and velocity amplitude, energy and area are also listed in Table 4.2. Additionally, the 

following parameters of the records are listed in Table S1 in the electronic supplement to the paper of 

Lu and Panagiotou [2014]: strike angle, distance from fault rupture plane (Rrup), peak ground 

acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and shear wave 

velocity of the top 30 m of soil (Vs30). 
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These 40 records were selected by the following criteria: (a) earthquake magnitude MW ≥ 6.3; 

(b) distance from the fault rupture plane less than 10 km; and (c) PGV ≥ 23.6 in/s in any of the two 

recorded horizontal components. The 1979 Imperial Valley (CA), 1994 Northridge (CA), and 1999 

Chi-Chi (Taiwan) earthquake records were limited to 5, 8, and 9 records, respectively, those with the 

largest PGV. The 2011 Christchurch (New Zealand) earthquake resulted in four more ground motion 

records (in addition to the PRPC record studied here) with Rrup ≤ 10 km and PGV ≥ 23.6 in/s that 

were not included. It should be noted that these 40 records are about 40% of the total number of 

historical records to date with MW ≥ 6.3 and Rrup ≤ 10 km. 

Figure 4.2 shows the 2% damped acceleration and displacement response spectra for each of 

the 40 fault-normal (FN) and fault-parallel (FP) components of the ground motions along with the 

mean spectra. Similar to the broadband set of ground motions, the numerical analyses were 

conducted with the fault-normal and fault-parallel components of each ground motion record applied 

separately to the bridge pier models, while the amplitude scale factors used were 1/3, 1/2, 2/3, 1, 1.5, 

2 and 3. 
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Table 4.1 Broadband set of ground motions. 

No. Earthquake Location 
Mammoth Lakes 
Chi-Chi, Taiwan 

Year 
1980 
1999 

Mw 

6.0 
7.6 

Rrup (km) 
15.5 
16.1 

Station Name 
Long Valley Dam (Upr L Abut) 

CHY036 
Cape Mendocino, CA 
Imperial Valley, CA 

Kocaeli, Turkey 
Imperial Valley, CA 

Chi-Chi, Taiwan 

1992 
1979 
1999 
1979 
1999 

7.0 
6.5 
7.5 
6.5 
7.6 

14.3 
22 
4.8 

24.6 
14.8 

Rio Dell Overpass – FF 
Delta 

Yarimca 
Calipatria Fire Station 

CHY034 
Chi-Chi, Taiwan 1999 7.6 38.4 NST 
Kocaeli, Turkey 

Trinidad 
Spitak, Armenia 
Loma Prieta, CA 
Chi-Chi, Taiwan 

1999 
1980 
1988 
1989 
1999 

7.5 
7.2 
6.8 
6.9 
7.6 

15.4 
-
-

14.3 
8.5 

Duzce 
Rio Dell Overpass, E Ground 

Gukasian 
Gilroy Array #4 

TCU060 
Victoria, Mexico 1980 6.3 19 Chihuahua 
Loma Prieta, CA 1989 6.9 39.9 Fremont - Emerson Court 
Chalfant Valley 
Chi-Chi, Taiwan 

1986 
1999 

6.2 
7.6 

7.6 
26.8 

Zack Brothers Ranch 
TCU118 

Denali, Alaska 
Imperial Valley, CA 

Big Bear 
Landers, CA 

2002 
1979 
1992 
1992 

7.9 
6.5 
6.5 
7.3 

2.7 
7.1 
-

23.6 

TAPS Pump Station #10 
El Centro Array #4 

San Bernardino - E & Hospitality 
Yermo Fire Station 

Northridge, CA 1994 6.7 5.4 Sylmar - Converter Sta 
San Fernando, CA 

N. Palms Springs, CA 
Loma Prieta, CA 

1971 
1986 
1989 

6.6 
6.0 
6.9 

22.8 
12.1 
27.9 

LA - Hollywood Stor FF 
Morongo Valley 

Hollister - South & Pine 
Chi-Chi, Taiwan 1999 7.6 6.4 TCU055 
Chi-Chi, Taiwan 1999 7.6 19.1 CHY025 

Imperial Valley, CA 
Chi-Chi, Taiwan 

1979 
1999 

6.5 
7.6 

10.4 
37.5 

Brawley Airport 
CHY088 

Duzce, Turkey 
Chi-Chi, Taiwan 

1999 
1999 

7.1 
7.6 

6.6 
17.2 

Duzce 
TCU061 

Loma Prieta, CA 
Imperial Valley, CA 

Chi-Chi, Taiwan 

1989 
1940 
1999 

6.9 
7.0 
7.6 

8.5 
6.1 

31.8 

Saratoga - Aloha Ave 
El Centro Array #9 

TCU123 
Northridge, CA 
Chi-Chi, Taiwan 

1994 
1999 

6.7 
7.6 

5.4 
35.1 

Jensen Filter Plant 
CHY104 

Loma Prieta, CA 1989 6.9 32.8 Salinas - John & Work 
Loma Prieta, CA 
Chi-Chi, Taiwan 

1989 
1999 

6.9 
7.6 

20.8 
40.4 

Coyote Lake Dam (Downst) 
CHY008 

Chi-Chi, Taiwan 1999 7.6 45.7 TCU141 
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Table 4.2 Near-fault pulse-like set of unscaled ground motions. 

No. Earthquake Location Year Mw Station Name Rrup 
(km) 

1st pulse (FN) 

Tp (s) amax 
(g) 

vmax 
(in/s) 

E 
(ft2/s) A (ft) 

2nd pulse (FN) 

Tp (s) amax 
(g) 

vmax 
(in/s) 

E 
(ft2/s) 

A 
(ft) 

1 Christchurch, NZ 2011 6.3 PRPC 2.5 2.3 0.26 35.6 8.0 4.2 4.6 0.04 11.2 2.2 3.8 
2 Coalinga, CA 1983 6.4 Pleasant Valley P.P. - Yard 8.4 0.7 0.49 22.8 1.0 0.8 1.1 0.18 13.9 0.8 1.1 
3 Superstition Hills, CA 1987 6.5 Parachute Test Site 1.0 2.2 0.30 38.1 9.6 4.5 5.0 0.03 10.4 1.8 3.4 
4 Imperial Valley-06, CA 1979 6.5 EC Meloland Overpass FF 0.1 2.7 0.19 34.4 8.3 4.8 2.0 0.08 10.9 0.9 1.6 
5 Imperial Valley-06, CA 1979 6.5 El Centro Array #7 0.6 3.4 0.13 28.9 9.0 6.1 0.7 0.29 13.0 0.6 0.9 
6 Imperial Valley-06, CA 1979 6.5 El Centro Array #6 1.4 3.5 0.16 33.2 14.9 8.0 7.7 0.01 2.8 0.3 2.2 
7 Imperial Valley-06, CA 1979 6.5 El Centro Array #5 4.0 3.8 0.14 31.9 10.7 6.3 2.9 0.05 8.1 0.6 1.5 
8 Imperial Valley-06, CA 1979 6.5 El Centro Array #4 7.1 4.3 0.10 27.2 8.8 6.1 1.3 0.13 9.7 0.4 0.9 
9 San Fernando, CA 1971 6.6 Pacoima Dam 1.8 1.4 0.41 38.7 5.4 2.8 5.4 0.03 10.8 1.8 3.5 
10 Erzincan, Turkey 1992 6.7 Erzincan 4.4 2.4 0.20 31.1 6.1 3.9 0.9 0.24 14.4 0.9 1.1 
11 Northridge, CA 1994 6.7 Sylmar - Converter Sta East 5.2 2.8 0.10 18.6 5.1 5.3 1.0 0.31 18.7 1.0 1.0 
12 Northridge, CA 1994 6.7 Sylmar Olive View Med FF 5.3 2.4 0.15 25.0 7.1 5.8 1.2 0.21 17.4 1.7 2.0 
13 Northridge, CA 1994 6.7 Sylmar - Converter Sta 5.4 2.6 0.16 27.6 9.9 7.2 1.2 0.29 24.0 3.2 2.8 
14 Northridge, CA 1994 6.7 Jensen Filter Plant 5.4 2.7 0.15 29.2 9.5 6.6 1.1 0.21 16.9 1.1 1.3 
15 Northridge, CA 1994 6.7 Newhall W. Pico Canyon Rd 5.5 2.4 0.24 30.5 7.4 4.1 1.0 0.17 11.7 0.6 1.1 
16 Northridge, CA 1994 6.7 Newhall Fire Station 5.9 0.9 0.65 37.5 3.3 1.7 2.0 0.17 19.3 2.2 2.0 
17 Northridge, CA 1994 6.7 Rinaldi Receiving Station 6.5 1.2 0.70 50.9 8.6 3.2 1.8 0.17 19.0 1.8 1.8 
18 Northridge, CA 1994 6.7 Pacoima Dam 7.0 0.9 0.66 26.3 3.1 1.6 0.7 0.36 17.1 0.9 1.0 
19 Kobe, Japan 1995 6.9 Takarazuka 0.3 1.5 0.24 23.4 2.2 1.8 1.6 0.09 9.2 0.6 1.5 
20 Kobe, Japan 1995 6.9 KJMA 1.0 0.8 0.69 37.4 4.7 2.6 2.2 0.14 16.7 2.0 2.1 
21 Kobe, Japan 1995 6.9 Takatori 1.5 1.9 0.36 45.1 17.2 7.5 1.1 0.44 32.4 5.6 3.5 
22 Loma Prieta, CA 1989 6.9 LGPC 3.9 2.9 0.10 20.9 6.0 5.9 1.2 0.32 25.6 2.0 1.6 
23 Cape Mendocino, CA 1992 7.0 Cape Mendocino 7.0 5.0 0.05 13.8 2.6 3.6 0.9 0.29 17.6 0.8 0.8 
24 Cape Mendocino, CA 1992 7.0 Petrolia 8.2 0.9 0.49 26.5 1.7 1.2 3.3 0.05 9.9 0.9 1.7 
25 Duzce, Turkey 1999 7.1 Duzce 6.6 5.5 0.04 16.5 7.1 8.9 2.9 0.05 10.1 1.4 2.9 
26 Landers, CA 1992 7.3 Lucerne 2.2 4.8 0.11 29.9 12.8 7.7 10.5 0.01 7.4 2.4 6.6 
27 Tabas, Iran 1978 7.4 Tabas 2.1 4.7 0.12 39.6 25.9 13.5 3.8 0.05 12.3 2.9 4.7 
28 Kocaeli, Turkey 1999 7.5 Sakarya 3.1 9.0 0.03 16.3 6.4 7.6 2.5 0.08 11.9 1.1 1.6 
29 Kocaeli, Turkey 1999 7.5 Yarimca 4.8 7.7 0.03 12.6 4.1 5.5 3.0 0.06 12.1 2.0 3.5 



 

 

 

  

        
 

      

   
 

 
       

 
 
   

                 
                 
                 
                 
                 
                 
                 
                 
                 
                    
                 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 (Continued) 

No. Earthquake Location Year Mw Station Name Rrup 
(km) Tp (s) 

1st pulse (FN) 

amax 
(g) 

vmax 
(in/s) 

E 
(ft2/s) A (ft) Tp (s) 

2nd pulse (FN) 

amax 
(g) 

vmax 
(in/s) 

E 
(ft2/s) 

A 
(ft) 

30 Chi-Chi, Taiwan 1999 7.6 TCU068 0.3 11.3 0.09 62.5 116.7 36.5 3.2 0.22 39.8 15.2 6.8 
31 Chi-Chi, Taiwan 1999 7.6 TCU065 0.6 4.4 0.12 35.4 26.9 15.3 3.1 0.09 18.2 4.4 4.9 
32 Chi-Chi, Taiwan 1999 7.6 TCU067 0.6 11.1 0.02 16.7 8.2 9.6 1.9 0.23 24.7 3.4 2.5 
33 Chi-Chi, Taiwan 1999 7.6 TCU052 0.7 7.4 0.11 52.5 53.9 20.1 2.2 0.21 28.5 8.5 5.7 
34 Chi-Chi, Taiwan 1999 7.6 TCU075 0.9 4.9 0.10 30.8 12.9 7.9 3.5 0.04 9.4 1.5 3.2 
35 Chi-Chi, Taiwan 1999 7.6 TCU102 1.5 7.5 0.04 21.9 11.5 10.3 2.8 0.10 18.0 3.9 4.0 
36 Chi-Chi, Taiwan 1999 7.6 CHY080 2.7 0.9 0.59 36.1 5.7 3.2 1.9 0.12 16.5 1.8 2.3 
37 Chi-Chi, Taiwan 1999 7.6 CHY028 3.1 2.2 0.10 15.5 1.9 2.5 0.8 0.30 17.4 1.0 1.2 
38 Chi-Chi, Taiwan 1999 7.6 TCU072 7.0 11.3 0.01 7.3 1.7 4.3 0.8 0.35 18.7 1.4 1.5 
39 Denali, Alaska 2002 7.9 Alyeska Pump Station 10 2.7 7.4 0.04 18.5 7.6 7.3 2.4 0.14 20.9 5.5 5.1 
40 Wenchuan, China 2008 7.9 Mianzuqingping 3.0 7.7 0.07 31.0 20.6 12.5 2.5 0.09 15.7 2.9 3.8 
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Figure 4.1 Linear acceleration and displacement spectra for 2% damping ratio for the unscaled (a, c) 
fault-normal and (b, d) fault-parallel components of the unscaled broadband ground 
motions. 

Figure 4.2 Linear acceleration and displacement spectra for 2% damping ratio for the unscaled (a, c) 
fault-normal and (b, d) fault-parallel components of the unscaled near-fault pulse-like 
ground motions. 
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4.3 BRIDGE PIER CHARACTERISTICS 

In total, 688 idealized bridge piers supported on rocking shallow foundations were studied here 

to determine the appropriate equivalent viscous damping values due to the soil inelasticity 

beneath the footings. The bridge piers consisted of a square footing and a circular column 

supporting the effective deck weight. The key parameters varied between the models were: (i) 

the height of the column (Hc); (ii) the critical contact area ratio of the rocking foundation (ρac); 

(iii) the rocking base shear coefficient (Cr); defined as the foundation base shear that mobilizes 

the moment capacity of the foundation divided by the seismic weight of the bridge pier; (iv) the 

deck weight (Wd); and (v) the inclusion or not of the P-Δ effects in the nonlinear response history 

analysis. 

The different column heights were studied so that the initial elastic period of the rocking 

bridge piers would differ, when the other key parameters were the same. Specifically, five 

column heights (Hc) were investigated: 20, 40, 60, 80 and 100 ft. The critical contact area ratios 

of the footings (ρac) studied here were equal to 0.33, 0.25, 0.14 and 0.09 to reflect different levels 

of soil inelasticity. Deng et al. [2012a] based on experimental studies showed that when ρac ≤ 

0.14, the resulting residual settlements due to rocking are limited. However, as discussed in 

Section 3.4, BNWF numerical models underestimate on average the hysteretic damping observed 

in physical tests. With respect to the rocking base shear coefficient (Cr), a wide range of values 

was chosen (i.e. equal to 0.075, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.5) whereas the 

deck weights (Wd) were 1500, 3000 and 4500 kip. Finally, each model was analyzed with and 

without P-Δ effects. 

The following simplifications were made to the studied bridge piers: (i) zero embedment 

depth; (ii) the footing and column elements were assumed stiff and massless; (iii) the mass 

moment of inertia of the deck was neglected; and (iv) the height of the footing and the vertical 

distance between the deck centroid and the top of the column were equal to zero. 

Based on the above simplifications, assuming a column height (Hc), a critical contact area 

ratio (ρac), a rocking base shear coefficient (Cr) and a deck weight (Wd), the required foundation 

moment capacity (Mfc) is calculated as Mfc = Cr ·Wd ·Hc. The required footing length (Lf), is then 

calculated as Lf = (2·Mfc)/[Wd·(1-ρac)], while the bearing capacity of the soil at the critical contact 

area (qc) is computed as qc = Wd / (A·ρac). Finally, the foundation rocking stiffness at 50% of the 

moment capacity (Kf_50) is determined as Kf_50 = 300·Mf [Deng et al. 2014]. Figure 4.3 plots the 
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correlation between the main parameters of the studied models for an effective deck weight of 

1500 kip. 

Lastly, an additional set of bridge piers was analyzed with the inelastic mode of response 

to be that of column plastic hinging instead of foundation rocking. In that case an elastic-

perfectly-plastic (EPP) rotational spring was placed at the base of the column. These piers were 

studied to confirm that the approach and set of ground motion used, for determining the 

appropriate equivalent viscous damping of rocking shallow foundations, can closely reproduce 

the published damping expression for the EPP hysteretic rule by Dwairi et al. [2007], Grant et al. 

[2005] and Priestley et al. [2007]. For the set of bridge piers with plastic hinging, the initial 

fundamental period of the pier was set equal to that of the respective rocking bridge pier (Tf_50) 

with ρac = 0.25. 

Figure 4.3 Correlation between the main parameters of the bridge pier models with deck weight of 
1500 kip: rocking base shear coefficient (Cr); initial period (Tf_50); column height (Hc); and 
column height to footing length ratio (Hc / Lf). 
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4.4 NUMERICAL MODELS 

Two-dimensional (2D) nonlinear response history analyses were conducted using the Open 

System for Earthquake Engineering Simulation (OpenSees) platform [Mazzoni et al. 2014]. The 

numerical model is similar to that shown in Figure 3.1(a), but with stiff linear elements used to 

model the column and the footing. 

The soil underneath each surface footing was modeled using 43 vertical zero-length 

springs (QzSimple1) distributed in a non-uniform pattern. The number of springs within the 

critical contact length region (Lc = Ac/Lf) were equal to 14, 11, 5 and 5 for the critical contact 

area ratios (ρac) equal to 0.33, 0.25, 0.14 and 0.09, respectively. The strength and stiffness of the 

vertical springs were obtained from the calibration procedure described in Section 3.3.2. 

In addition, a zero-length horizontal spring using the TzSimple1 force-displacement 

relation is attached to the base of the column. The stiffness of this spring is determined according 

to Gazetas [1991], while the ultimate force capacity is set equal to two times the deck weight to 

minimize sliding deformations, the effect of which is not studied here. 

At the top of the column, a single translational mass was assigned to represent the deck 

effective weight, while the corresponding mass moment of inertia was set equal to zero. The 

gravity load was assigned as point load in the above location. Radiation dashpots for the soil-

footing springs were not included. A small stiffness proportional damping was used to produce 

0.1% damping ratio at the initial fundamental period. The tangent stiffness matrix of the previous 

time step was used to determine the damping matrix. A single horizontal direction of excitation 

was used for the numerical analyses. 

The numerical model of the hinging column bridge piers is similar to that of the rocking 

foundation piers, but it used an elastic-perfectly-plastic rotational spring at the base of the stiff 

column. In addition, stiffness proportional damping was used to produce 2% damping ratio at the 

initial fundamental period, with the damping matrix updated based on the tangent stiffness 

matrix of the previous time step. The different viscous damping ratio is used to replicate the 

study by Dwairi et al. [2007]. 
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4.5 STATIC MONOTONIC AND CYCLIC FOUNDATION RESPONSE 

Figures 4.4 and 4.5 compare the normalized moment – rotation relationships of the BNWF 

numerical models and the Deng et al. [2014] trilinear backbone for the studied critical contact 

area ratios. The loading protocol for the static cyclic tests consisted of eight packets of increasing 

rotation amplitude, corresponding to normalized footing rotations (θf/bf) of 0.1, 0.25, 0.5, 1, 2, 4, 

6 and 8, with 3 cycles per packet. Figure 4.6 plots the area-based hysteretic damping ratios 

obtained from the cyclic static analysis of the BNWF models. 

Figure 4.4 Monotonic moment – rotation foundation response compared with the Deng et al. [2014] 
trilinear backbone for the studied ρac values. 
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Figure 4.5 Static cyclic moment – rotation foundation response compared with the Deng et al. [2014] 
trilinear backbone for the studied ρac values. 

Figure 4.6 BNWF-derived (determined from Figure 4.5) area-based hysteretic damping ratios (ξhys_a) 
versus normalized footing rotation (θf / bf) for the studied ρac values. 
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4.6 CORRECTION FACTOR FOR THE DENG ET AL. [2014] AREA-BASED HYSTERETIC 
DAMPING RATIOS 

The equivalent viscous damping for a hysteretic system may be computed from the area of a 

hysteresis loop as suggested by the Jacobsen [1930] approach for steady-state harmonic forced 

vibrations. Priestley et al. [2007], Dwairi et al. [2007], and Grant et al. [2005] showed that this 

approach seriously overestimates the effective viscous damping in earthquake applications, and 

that correction factors should be applied to the area-based damping for use in displacement-

based analysis (see Section 2.2.1). They developed a set of correction factors required to make 

the mean peak drift for a set of ground motions, as predicted by DBA, equal to the mean (for the 

same set of motions) peak drift predicted by nonlinear response history analyses. The matching 

of drift demand is done in an average sense for a robust set of earthquake ground motions. They 

found that the correction factors were different for different shapes of hysteresis loops. In this 

section, we determine the appropriate correction factors for rocking foundation hysteretic 

systems. The reduction factors determined here will be applied to the Deng et al. [2014] area-

based hysteretic damping ratio expressions. 

4.6.1 Evaluation of the Ground Motion Sets Used 

The results of the bridge piers with plastic hinging are presented to validate that the used ground 

motion sets can replicate the published equivalent viscous damping expressions of Dwairi et al. 

[2007] and Grant et al. [2005] for an elastic-perfectly-plastic hysteretic rule. Dwairi et al. [2007] 

used 100 unscaled far-field motions, while Grant et al. [2005] used a smaller number of 

spectrum-compatible artificial motions with longer strong motion duration. Priestley et al. [2007] 

combined the two studies by taking the average of them. 

Procedure 

The procedure closely follows that of Dwairi et al. [2007]. Specific steps followed are: 

(i) Obtain the peak displacement demand from the nonlinear response history analysis 

(ΔNRHA) and the corresponding ductility (μ = ΔNRHA/Δy) for each bridge pier model and 

ground motion. Discard the cases where peak displacement demand exceeds the static 

tip over displacement, Δcr, defined as Δcr = Mc/(Hc ·Wd). 
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(ii) Based on the peak displacement demand (ΔNRHA) and the monotonic force-

displacement backbone without P-Δ effects, compute the corresponding effective 

secant period (Te). 

(iii) Using Te and ΔNRHA calculate the equivalent system damping (ξsys_eq) needed so that 

the linear spectral displacement at Te equals ΔNRHA. 

(iv) Recall that 2% elastic viscous damping (described in Section 4.4) was included in the 

NRHA. Hence, the equivalent hysteretic damping is obtained from ξhys_eq = ξsys_eq -

2%. If the computed equivalent hysteretic damping system damping is negative, it 

was set to zero. 

(v) Plot the equivalent hysteretic damping (ξhys_eq) versus ductility (μΔ) and determine a 

curve to fit the data based on the least squared error method. 

Results 

Figure 4.7 plots the ξhys_eq versus μΔ data, obtained from the nonlinear response history analyses 

for the fault-normal components of the broadband (BB_FN) set, based on the above procedure. 

The shown NRHA data are limited to those cases where displacement ductility is less than, or 

equal to 8, and Te > 1 s. In addition, it shows the Dwairi et al. [2007] expression for Te ≥ 1 s, as 

well as the Grant et al. [2005] expressions for Te = 1 s and Te = 6.6 s that are the minimum and 

maximum effective periods in the plotted data set. Lastly, a moving median and a linear least 

square regression line, that is a scaled-down expression of the area-based hysteretic damping, are 

plotted based on the obtained data. It is observed that the moving median and regression lines, 

obtained from the BB_FN set, lie within the upper bound expression of Dwairi et al. [2007] and 

the lower bound expression of Grant et al. [2005]. 

Based on Figure 4.7, the area-based hysteretic damping ratio correction factor (Cξa_μ) for 

the EPP hysteretic rule and the BB_FN set can be obtained by dividing the empirical regression 

line of the NRHA data with the theoretical area-based hysteretic damping (ξhys_a). Figure 4.8 

plots Cξa_μ versus ξhys_a for displacement ductility of 2, 4 and 6, as obtained from the four ground 

motion sets considered here, and the Priestley et al. [2007] study. The broadband motions yield 

results that are in very good agreement with the Priestley et al. [2007] expression. A smaller 

Cξa_μ is found to be needed for the near-fault motions; however, such motions have not been 

considered by Dwairi et al. [2007] and Grant et al. [2005]. 
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Figure 4.7 Nonlinear response history analyses – derived equivalent hysteretic damping versus 
ductility for the elastic-perfectly-plastic hysteresis rule for the fault-normal components of 
the broadband ground motions and comparison with published expressions. 
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Figure 4.8 Correction factors to be applied to area-based hysteretic damping ratios (Cξa_μ) versus 
area-based hysteretic damping ratio (ξhys_a) for the elastic-perfectly-plastic hysteresis rule, 
for displacement ductility (μ) equal to 2, 4 and 6; comparison between present study and 
Priestley et al. [2007]. Note: Dashed black lines are approximate fit lines from Priestley et 
al. [2007] for various structural hysteretic rules and ductility of 2, 4 and 6 (see Figure 2.2). 
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4.6.2 Area-based Hysteretic Damping Ratio Correction Factor for Rocking Foundation 

After demonstrating that our procedure was producing consistent results with other studies for 

elastic-perfectly-plastic systems, a similar procedure was followed to develop correction factors 

for the Deng et al. [2014] area-based expressions for hysteretic damping. 

Procedure 

The procedure is similar to the one used for the elastic-perfectly-plastic hysteresis rule. Specific 

steps are: 

(i) Obtain the peak displacement (ΔNRHA) and footing rotation demand (θf_NRHA) from the 

nonlinear response history analyses, and compute the corresponding normalized 

footing rotation (θf_NRHA/bf) for each bridge pier model and ground motion using the 

BNWF model described in Section 4.4. Neglect the cases where peak displacement 

demand exceeds the static tip over displacement, Δcr, defined as Δcr = Mfc/(Hc ·Wd). 

(ii) Based on the peak footing rotation demand (θf_NRHA) and the monotonic moment-

rotation backbone of the BNWF models, compute the effective period (Te) without 

elongation of period due to P-Δ effects. 

(iii) Utilizing the Te and ΔNDA, calculate the equivalent hysteretic damping (ξhys_eq) so that 

the linear spectral displacement at Te equals ΔNRHA. If the equivalent hysteretic 

damping is less than zero, set ξhys_eq = 0. 

(iv) Plot the equivalent hysteretic damping (ξhys_eq) versus actual footing rotation demand 

(θf_NRHA/bf) and smooth the data by a two-pass median filter, where first-pass and 

second-pass window width included 1/50 and 1/10 of the total number of data points 

respectively. 

(v) For normalized footing rotations equal to 1, 2, 4, 6 and 8, compute the area-based 

correction factor (Cξa_μ) as the ratio between the first-cycle BNWF area-based 

hysteretic damping ratio and the median fit line. Normalized footing rotations less 

than 1 are not used for the regression, as the corresponding BNWF area-based 

hysteretic damping ratios are larger than those observed in physical tests, and hence, 

are considered to be unreliable (see Section 3.4 and Figure 4.6). In addition, the first-

cycle BNWF area-based hysteretic damping curve is chosen, over those for the 

second and third cycle, as more relevant to the Deng et al. [2014] expressions that do 
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not consider energy dissipation degradation upon continued cycling at the same 

amplitude. 

Results 

Figure 4.9 and Figure 4.10 plot the equivalent hysteretic damping ratio (ξhys_eq) versus 

normalized footing rotation (θf/bf) as obtained from the NRHAs for ρac values of 0.25 and 0.14, 

respectively. They also plot the area-based hysteretic damping ratio as obtained from the BNWF 

numerical model for the first cycle and the moving median fit-line to the NRHA data. It is 

observed that the moving median fit-line for the fault-normal components of the broadband set 

follows fairly closely the shape of the area-based damping, while for the other ground motion 

sets, the moving median line shows a constant or slightly decreasing equivalent hysteretic 

damping ratio with increasing footing rotation. The significant scatter of the data is also 

noticeable. 

Figure 4.11 plots the correction factors for the area-based hysteretic damping ratios 

(Cξa_μ) as a function of the area-based hysteretic damping ratio (ξhys_a) for rocking shallow 

foundations for normalized footing rotations (θf/bf) ranging from 1 to 8 for the different ρac and 

ground motion sets. It is noticed that for the fault-normal components of the broadband set, Cξa_μ 

is fairly independent of ρac and footing rotation, ranging from 0.84 to 1.08, as opposed to the 

other ground motion sets studied. For these ground motion sets, Cξa_μ decreases as footing 

rotation increases for a given ρac value from about 1.36 for θf/bf = 1 to approximately 0.5 for θf/bf 

= 8. Nevertheless, given the simplifying nature of the displacement-based analysis method, it is 

proposed that Cξa_μ can be taken, for all cases, as 

ξa _μC 0.9 (4.1)  
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Figure 4.9 Nonlinear response history analyses – derived equivalent hysteretic damping (ξhys_eq) 
versus normalized footing rotation (θf/bf) for the rocking bridge piers with ρac = 0.25: (a) 
broadband set – fault-normal components; (b) broadband set – fault-parallel components; 
(c) near-fault set – fault-normal components; and (d) near-fault set – fault-parallel 
components. 
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Figure 4.10 Nonlinear response history analyses – derived equivalent hysteretic damping (ξhys_eq) 
versus normalized footing rotation (θf/bf) for the rocking bridge piers with ρac = 0.14: (a) 
broadband set – fault-normal components; (b) broadband set – fault-parallel components; 
(c) near-fault set – fault-normal components; and (d) near-fault set – fault-parallel 
components. 
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Figure 4.11 Plot of correction factors for the area-based hysteretic damping ratios (Cξa_μ) versus area-
based hysteretic damping ratio (ξhys_a) for rocking shallow foundations at normalized footing 
rotations (θf/bf) equal to 1, 2, 4, 6 and 8 for different ρac cases: (a) broadband set – fault-
normal components; (b) broadband set – fault-parallel components; (c) near-fault set – 
fault-normal components; and (d) near-fault set – fault-parallel components. 

58  



 

  

    

        

        

         

        

     

 

  

    

   

 

        

   

     

    

      

      

  

    

 

    

 

       

      

  

     

 

 

Evaluation procedure 

A forward evaluation algorithm is used here to compare the peak drift ratio demands as 

computed by the nonlinear response history analyses (NRHA) and predicted by the 

displacement-based analysis (DBA) method for the rocking bridge piers without P-Δ effects with 

ρac = 0.25. The purpose of this evaluation is: (i) to identify how the significant scatter observed 

in the equivalent hysteric damping ratios of Figure 4.9 translates into scatter of predicting the 

peak drift ratio demand that is the outcome of the displacement-based analysis; and (ii) to assess 

how the area-based hysteric damping ratio correction factor of Eqn. (4.1) improves the prediction 

of peak displacement response. The steps of the evaluation procedure are: 

(i) For each bridge pier model and ground motion, assume an input trial lateral 

displacement at the top of the column (Δi). For first iteration Δi is taken so that is 

corresponds to a drift ratio of 1.2%. 

(ii) Based on Δi compute the corresponding footing rotation (θf,i) assuming the column to 

be rigid (assumption that is very close to the numerical model), the normalized 

footing rotation (θf,i/bf), the footing moment (Mf,i) from the BNWF model’s 

monotonic moment – rotation backbone, and the lateral force as Fi = Mf,i/Hc. 

(iii) Based on the normalized footing rotation, compute the equivalent hysteretic damping 

ratio (ξhys_eq) from the BNWF model’s area-based hysteretic damping curve for cycle 

1 and correct this value based on Eqn. (4.1) if applicable. 

(iv) Based on the lateral displacement (Δi) and force (Fi), compute the effective lateral 

stiffness and period (Te,i). 

(v) From the linear displacement spectrum of the considered ground motion for Te,i and 

ξhys_eq, compute a new lateral displacement at the top of the column (Δf). 

(vi) Return to step (i) and repeat procedure using Δf as Δi, until the initial and final value 

converge within 1% error. Compute the predicted drift ratio demand corresponding to 

Δf when convergence has been achieved. 

(vii) Compare the drift ratio predicted by DBA to the drift ratio predicted by the NRHA. 
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Results 

Figure 4.12 compares the peak drift ratio demand computed from the NRHA and that predicted 

by the DBA method using the BNWF area-based hysteretic damping ratio for cycle 1, for the 

rocking bridge piers with ρac = 0.25 and the four different ground motion sets. The DBA method 

slightly underestimates the median drift ratio demand as computed by the NRHAs by a factor of 

approximately 1.15 with small differences between the ground motion sets. Overall, it is shown 

that the direct use of the area-based hysteretic damping ratio in the displacement-based analysis 

framework is un-conservative. 

A similar comparison is shown in Figure 4.13, but in this case, the equivalent hysteretic 

damping ratio obtained from the area-based one, is corrected based on Eqn. (4.1). It is noticed 

that the median drift ratio demand predicted by DBA is close to that of the NRHA for all cases. 

The slightly less favorable comparison for the near-fault motions can possibly be attributed to the 

fact that the correction factor Cξa_μ plotted in Figure 4.11 is not as stable as it is shown to be for 

the broadband motions. It is also noted that from the arithmetic mean point of view, the proposed 

correction factor in Eqn. (4.1) is conservative. 
th thFigures 4.12 and 4.13 also plot the moving 16 and 84 percentile lines to identify the 

scatter in the prediction capability of the DBA method. Figure 4.13 shows that irrespective of the 

ground motion set, the DBA yields results than in 68% of the cases are within a factor of 2 

higher and a factor of 1.3 lower than the drift ratio demand computed from the NRHA. 

The introduction of the area-based correction factor, while it improved the median 

prediction of the displacement-based analysis method, it also slightly increased the scatter. This 

is due the peaks and troughs of the linear displacement spectrum that become more dominant as 

the equivalent viscous damping decreases. Dwairi et al. [2007] have also shown this side effect 

of the use of area-based correction factors for different hysteretic rules. 
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Figure 4.12 Comparison between the peak drift ratio demand computed from the nonlinear response 
history analyses and that predicted by the displacement-based analysis method using the 
BNWF area-based hysteretic damping ratio for cycle 1, for the rocking bridge piers with ρac 
= 0.25: (a) broadband set – fault-normal components; (b) broadband set – fault-parallel 
components; (c) near-fault set – fault-normal components; and (d) near-fault set – fault-
parallel components. 
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Figure 4.13 Comparison between the peak drift ratio demand computed from the nonlinear response 
history analyses and that predicted by the displacement-based analysis method using the 
BNWF area-based hysteretic damping ratio for cycle 1 corrected based on Eqn. 4.1, for the 
rocking bridge piers with ρac = 0.25: (a) broadband set – fault-normal components; (b) 
broadband set – fault-parallel components; (c) near-fault set – fault-normal components; 
and (d) near-fault set – fault-parallel components. 
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4.6.3 Area-based Hysteretic Damping Ratio Correction as a Function of Te 

Grant et al. [2005] and Dwairi et al. [2007] demonstrated that as the effective period of an 

oscillator increases for the same displacement ductility, less damping becomes effective in 

reducing the displacement demand; therefore, the correction factor of the area-based hysteretic 

damping ratio needs to be lowered. They have shown that for hysteretic rules as the Takeda Thin 

(reinforced concrete columns) and Takeda Fat (reinforced concrete beams) the effective period 

dependency becomes negligible for values greater than approximately 1 second that cover the 

majority of cases, while for an elastic-perfectly-plastic hysteretic rule the period dependency 

extends up to approximately 2 seconds. 

The area-based hysteretic damping ratio correction factor as a function of Te (Cξa_T|μ) for 

rocking foundations is studied here, to assess if it can reduce the scatter in the peak demands 

computed by the displacement-based analysis method, as observed in Figure 4.13. 

Procedure 

The procedure used to obtain Cξa_T|μ is as follows: 

(i) Plot the equivalent hysteretic damping (ξhys_eq) versus actual footing rotation demand 

(θf_NRHA/bf), obtained in Section 4.6.2 for various effective period (Te) bins, and 

smooth the data by a moving median filter. 

(ii) For each Te bin, compute the area-based correction factor needed due to the combined 

effects of ductility and effective period (Cξa_μ∩T), as the ratio between the first-cycle 

BNWF area-based hysteretic damping ratio and the median fit line for normalized 

footing rotations ranging from 1 to 8. 

(iii) Compute the area-based correction factor due to the effective period (Cξa_T|μ), as the 

ratio between Cξa_μ∩T and Cξa_μ, where Cξa_μ is shown in Figure 4.11. 

Results 

Figure 4.14 plots the area-based hysteretic damping ratio correction values due to effective 

period, as obtained by the above described process, for the studied ρac values and ground motion 

sets. Based on these results, it is confirmed that the area-based hysteretic damping ratio becomes 

less effective with increasing effective period, and the following tentative expression is 

considered: 
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Figure 4.14 Correction factor (Cξa_T|μ) for area-based hysteretic damping ratios versus effective period 
(Te) for rocking shallow foundations at normalized footing rotations (θf/bf) between 1 and 8, 
for the studied ρac cases. 

ξa _T|μ 0.31
e

1.44C
T

 (4.2)  

Evaluation results 

A forward evaluation procedure similar to the one described in Section 4.6.2, but with correcting 

the BNWF area-based hysteretic damping ratio of cycle 1 by the product of Cξa_μ and Cξa_μ|Τ is 

carried out to examine if the introduction of effective period dependency improves the 

prediction. 

Figure 4.15 compares the peak drift ratio demand from the nonlinear response analyses 

and the displacement-based analysis method when Te dependency is taken into account. 

Comparison of Figure 4.15 with Figure 4.14 reveals that the scatter in the prediction of the 

displacement-based analysis method does not improve to a noticeable extent when the effective 

period dependency is considered, while the median prediction for the near-fault set is shown to 

slightly improve at small drift ratios. Therefore, it is concluded that the effective period 

dependency can be neglected in the displacement-based analysis method. 
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Figure 4.15 Comparison between the peak drift ratio demand computed from the nonlinear response 
analyses and that predicted by the displacement-based analysis method using the BNWF 
area-based hysteretic damping ratio for cycle 1 corrected based on Eqns. 4.1 and 4.2, for 
the rocking bridge piers with ρac = 0.25: (a) broadband set – fault-normal components; (b) 
broadband set – fault-parallel components; (c) near-fault set – fault-normal components; 
and (d) near-fault set – fault-parallel components. 
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4.7 ALTERNATIVE HYSTERETIC DAMPING RATIO EXPRESSION  

Experiments have shown that loose, cohensionless backfill soil falling into the gap under the 

rocking footing contributes to damping [Gajan and Kutter 2008; Deng et al. 2012a; Antonellis et 

al. 2015]. In this section, alternative lower-bound hysteretic damping ratio curves applicable to 

cases where the foundation is explicitly designed to prevent sand falling are derived from the 

BNWF models with ρac equal to 0.25 and 0.14. These damping curves are proposed as secondary 

to the primary damping curves of Deng et al. [2014] modified by the correction factor of Eqn. 

4.1, because of (i) the inherent limitations of BNWF models discussed in Section 3.3.2; (ii) the 

limited number of physical tests for which the BNWF models have been calibrated to, as 

opposed to the large number of tests that support the Deng et al. [2014] expressions; and (iii) the 

lack of accounting of the footing backfill hysteretic damping that an embedded rocking footing 

will induce even if sand falling under the footing is explicitly prevented. 

Figure 4.16 plots the BNWF-derived median curves of hysteretic damping ratio versus 

footing normalized rotation for the four different ground motion sets. The median lines shown in 

Figure 4.16 are obtained from the median lines of Figure 4.9 (ρac = 0.25) and Figure 4.10 (ρac = 

0.14), multiplied by (Te/Tf_pl)2. This correction is carried out because the alternative hysteretic 

damping curves will be used within the Deng et al. [2014] framework (see Section 2.4.2), that 

combines the different sources of damping as elements in series: 
2 22

f _50 f _ plc
eq c rad f _hys2 2 2

e e e

T TTξ ξ ξ ξ
T T T

      (4.3)  

In the nonlinear response history analyses of the rocking bridge piers, ξrad = 0% and ξc ≈ 0%, 

leading to the (Te/Tf_pl)2 correction factor that varies between 1.39 and 1.04 for normalized 

footing rotations of 1 and 8, respectively. 

The median lines for ρac equal to 0.25 and 0.14 are fitted with the following expression 

f
f _hys

ac f

b0.30 3ξ 4
2 π 2.6 ρ 1 θ

 
   

   
(4.4)  

for θf/bf ≥1. For normalized footing rotations between 0.139 and 1, hysteretic damping ratio is 

obtained by linear interpolation between zero and the value of Eqn. (4.4) for θf/bf = 1. Eqn. (4.4) 

constitutes the proposed lower-bound hysteretic damping ratio curve applicable to cases with 
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explicit prevention of sand falling under the rocking foundation for ρac values between 0.14 and 

0.25. 
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Figure 4.16 Alternative lower-bound hysteretic damping ratio curves directly derived from BNWF 
models for ρac = 0.25 and 0.14, applicable to cases with explicit design to prevent soil 
falling under the rocking foundation. 

4.8 IMPORTANCE OF P-Δ EFFECTS 

Rocking foundations have a degrading post-peak lateral force capacity due to P-Δ effects, while 

such effects are not included in the linear design displacement spectra. Hence, this section 

investigates whether there is a need for the proposed displacement-based analysis method to 

consider P-Δ effects. 

First, the drift ratio demand amplification due to P-Δ effects is studied by nonlinear 

response history analyses of the rocking bridge pier models with and without P-Δ effects. Figure 

4.17 plots the ratio of the drift demand of a model with P-Δ to that of the respective model 

without P-Δ versus the instability ratio of the model without P-Δ effects. The instability ratio 

(θP-Δ) is the fraction of the moment capacity of the foundation that is due to the P-Δ moment. 

Cases of either model where the drift ratio demand exceeds that corresponding to static overturn 

are assigned a drift ratio value equal to 100%, resulting to two clouds of data observed at the top 

right and bottom right side of the plots. The median line remains fairly constant as the instability 

ratio increases, while the 84th percentile line gradually increases up to an instability ratio of 0.5, 

after which, P-Δ effects appear to rapidly amplify the drift demand of the models with P-Δ 

compared to those without. Figure 4.18 plots the same information with Figure 4.17, but with 

emphasis to cases with instability ratio values less than 0.6 and a linear y-axis. It is shown that 
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for θP-Δ equal to 0.3, 50% of the cases will have a drift ratio demand amplification due to P-Δ 

less than 1.04, while the corresponding value for the 84% of the cases is 1.25. It appears, 

therefore, that P-Δ effects could potentially be neglecting in the displacement-based method if 

P-Δ moment is bounded to 30% of the foundation moment capacity. 

To further consolidate this argument, the prediction capability of the evaluation 

procedure explained in Section 4.6.2 that does not account for P-Δ effects, is used predict the 

drift ratio demand of the rocking bridge pier models with ρac = 0.25 that include second-order 

effects. Figure 4.19 plots the ratio of the drift ratio demand computed from the nonlinear 

response history analyses (NRHA) with P-Δ effects to that predicted by the displacement-based 

analysis (DBA) method without P-Δ effects consideration versus the instability ratio 

corresponding to the peak demand predicted by DBA. It is shown that P-Δ effects are small (less 

than approximately 5% difference) when the predicted drift ratio demand corresponds to a P-Δ 

moment less than 30% of the footing rocking capacity. 

4.9 STEP-BY-STEP ANALYSIS PROCEDURE 

The proposed step-by-step displacement-based analysis method for the case of a single elastic 

cantilever column supported on rocking shallow foundation is provided in Table 4.3. With 

reference to Table 4.3, some additional notes are: 

1. Two expressions are provided for determining the equivalent hysteretic damping of a 

rocking footing. The first is based on the Deng et al. [2014] modified by the correction 

factor of Eqn. (4.1), while the second is purely derived from the NRHA results of the 

BNWF models. The use of the first or the second expression is discussed in Section 4.7. 

2. Radiation damping (ξrad) for a surface rocking footing ranges from 0% to 10% [Applied 

Technology Council (ATC) 2005] depending on the soil properties, the footing 

dimensions and the frequency of vibration. To ease calculations, a reasonable low value 

of 3% is suggested to be used in the case where radiation damping is not addressed 

explicitly using ATC [2005]. This value is fairly consistent with Paolucci et al. [2013] 

that suggested using ξrad = 3.6% as an alternative to analytical calculations. 

3. It is suggested that iterations may be stopped when the new displacement value is no 

more than 2% different than the previous value. However, the final displacement demand 
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obtained from the 2% relative error criterion can be more than 2% different than that 

obtained by a stricter relative error criterion, e.g. 0.1% relative error. Thus, use of a 

stricter relative error criterion, or a criterion based on the rate of convergence (that is the 

relative error of the current iteration compared to the relative error of the previous 

iterations) is not discouraged. 

It is noted that the above three comments, also apply to the displacement-based analysis 

methods presented in Chapters 5 and 6; nevertheless, they will not be iterated again. 
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Figure 4.17 Drift ratio demand amplification due to P-Δ effects as computed from the nonlinear 
response history analyses for rocking bridge piers with and without P-Δ effects, for ρac = 
0.25, versus instability ratio of the piers without P-Δ. 
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Figure 4.18 Drift ratio demand amplification due to P-Δ effects as computed from the nonlinear 
response history analyses for rocking bridge piers with and without P-Δ effects, for ρac = 
0.25, versus instability ratio of the piers without P-Δ. 
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Figure 4.19 Ratio of the drift demand computed from the nonlinear response history analyses (NRHA) 
of the rocking bridge piers (ρac = 0.25) with P-Δ effects to that predicted by the 
displacement-based analysis (DBA) method without P-Δ effects consideration, versus 
instability ratio corresponding to the peak demand of the DBA method. 
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Table 4.3 Proposed step-by-step displacement-based analysis method for a single elastic cantilever 
column supported on rocking shallow foundation. 

1. Determine the dimensions of the foundation normal (Lf) and parallel (Bf) to the rocking axis and 
the cross-sectional dimensions of the column based on a preliminary design. 

2. Iteratively calculate the critical contact area ratio (ρac) such that 

f _b ult _c f ac f _b0.95 W q A ρ 1.05 W     

where qc is the bearing capacity of the critical contact area, Ac, with plan dimensions of Bf and 
Lf ·ρac, Af is the plan area of the footing, and Wf_b is the total vertical force acting at the footing 
base. 

3. Compute the foundation rocking capacity (Mfc) and the lateral seismic capacity (Fc): 

 fc f _b f acM 0.5 W L 1 ρ   

c fcF M H

where H is the height of the deck from the footing base. 
4. Determine the effective seismic weight: 

s d cW W 0.33 W  

where Wd is the superstructural weight at the top of the column, and Wc is the column weight. 
5. Compute the lateral displacement at the top of the column due to its flexibility when the 

foundation has mobilized its moment capacity (Δc) and the column fixed-base period (Tc): 

 c fc cΔ M H K 

s
c

c

W gT 2π
K



where H is the height of the deck centroid from the footing base, and Kc is an estimate of the 
column lateral stiffness with Ieff ≈ 0.5·Ig. 

6. Compute the elastic rotational stiffness of the foundation (Kf_50), and the corresponding 
translational period (Tf_50): 

f _50 fcK 300 M 

s
f _50 2

f _50

W gT 2π
K H



7. Compute the lateral displacement corresponding to first yield of the rocking foundation (Δy1) and 
to the mobilization of the rocking footing capacity (Δy2): 

y1 c fΔ 0.5Δ H sin(0.5 h )   

y2 c fΔ Δ H sin(b )  

where hf = 1/600 rad, and bf = 0.012 rad. 
8. Assume a trial input system lateral displacement (Δsys). For first iteration, Δsys, can be set equal to 

Δy2. 
9. Compute the lateral force (F): 
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Table 4.3 (Continued) 

If Δsys ≤ Δy1 

Else if Δsys ≥ Δy2 

Otherwise 

10. Compute the footing rotation (θf): 

c sys y1F F Δ Δ 

cF F

sys y1
c

y2 y1

Δ Δ
F 0.5F 1

Δ Δ
 

  
  

 sys c c
f

Δ Δ F F
θ asin

H
  

  
 

11. Compute the footing hysteretic damping ratio (ξf_hys), and the secant, at peak displacement, 
rotational stiffness (Kf_pl) and corresponding translational period (Tf_pl) of the rocking foundation 
that is associated to the footing hysteretic damping: 
If θf ≤ 0.5·hf 

Else if θf ≥ bf 

f _hysξ 0

f _ plT 0

f
f _hys

ac f

0.90 3 bξ 4
2π 2.6 θρ 1

 
   

  
, or f

f _hys
ac f

0.30 3 bξ 4
2π 2.6 θρ 1

 
   

  

 f _ pl fc f fθK M h  , and s
f _ pl 2

f _ pl

W gT 2π
K H



Otherwise 

f f
f _hys

ac f f

0.90 3 0.5 hξ 4 1
2π 2.6 ρ 1 b .5 h

θ
0

    
      

     
, or f f

f _hys
ac f f

0.30 3 0.5 hξ 4 1
2π 2.6 ρ 1 b .5 h

θ
0

    
      

     

 f _ pl f f _50K F H Fθ H K    , and s
f _ pl 2

f _ pl

W gT 2π
K H



Note that the use of the first or the second ξf_hys expression is discussed in Section 4.7. 
12. Calculate the system effective period (Tsys) and equivalent viscous damping (ξsys): 

2 2 2
sys c f _50 f _ plT T T T  

2 2 2

f _50 f _ plc
sys c rad f _hys

sys sys sys

T TTξ ξ ξ ξ
T T T
     

       
     
     

where ξc is the column elastic damping, and ξrad is the radiation damping of the footing rocking 
mode. Column elastic damping can be taken as 2%, while radiation damping can be assumed as 
approximately 3% if not addressed explicitly using the FEMA 440 document [ATC 2005]. 
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Table 4.3 (Continued) 

13. Compute the new lateral displacement at the top of the column (Δsys): 

 
α

sys sys
sys

0.07Δ Sd T ,0.05
0.02 ξ
 

  
  

where α = 0.5 for a site at which the elastic design spectrum (Sd) is dominated by broadband 
motions, or α = 0.25 for the case near-fault pulse-like motions. 

14. Use Δsys as input value and repeat steps 8 to 13. Convergence occurs when computed system 
displacement at step 13 is no more than 2% different from the input displacement at step 8. 
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5 Analysis of Single Rocking Bent with Plastic 
Hinging at the Top of the Column 

5.1 INTRODUCTION 

This chapter presents the displacement-based seismic analysis of a single rocking bent in which 

the inelastic mode of response includes shallow foundation rocking and column-top plastic 

hinging. It is applicable to the response of single- or multi-column bridge bents in the 

longitudinal direction of bridges and to multi-column bridge bents in the transverse direction for 

the case where the strength and stiffness of the column-deck connection is substantial. The 

method is presented for the case of a single-column rocking bent, but can be directly extended 

for the cases of multi-column bents by considering the effective deck weight per each identical 

column. It should be noted that in the latter cases possible interaction between adjacent footings 

is not considered. 

Figure 5.1 shows the deformed-state schematic of a single rocking bent with plastic 

hinging at the top of the column. For lateral displacement at the top of the column, Δsys, the 

behavior of the bent can be decomposed, based on the location of the inflection point, to two 

already studied problems: a rocking foundation with a flexible cantilever column on top, with 

total height equal to H1 and lateral displacement equal to Δss1, and an inelastic cantilever of total 

height H2 and lateral displacement Δss2. The equivalent viscous damping ratio of each subsystem 

can be readily determined based on available relationships; those presented in Chapter 4 for the 

rocking subsystem and those presented in Priestley et al. [2007] for the plastic hinging 

subsystem. Lastly, the equivalent viscous damping at the bent-level can be obtained by 

combining in series these two subsystems. 

77  



 

       

 

      

 

     

   

     

     

      

       

   

 

    

     

    

      

      

    

   

 

    

       

 

  

     

      

    

       

 

As a result of the different strength and flexibility characteristics of the two subsystems, 

the location of the inflection point varies as a function of lateral drift ratio. In the initial stage it is 

controlled by the ratio of the elastic flexibilities, while in the later stage it is controlled by the 

ratio of the capacities of the two inelastic mechanisms. 

Two approaches are presented. First, a detailed method is presented based on a nonlinear 

monotonic analysis. This method accounts for the fluctuation of the inflection point. The second 

method avoids the use of a nonlinear monotonic pushover analysis, by assuming the inflection 

point is constant based on the ratio of the moment capacity of the footing to the nominal moment 

capacity of the column. In both methods, P-Δ effects are neglected but an upper limit to the 

allowable instability ratio (θP-Δ) is considered. The proposed limit varies linearly between 0.2 

when the footing capacity contribution to the bent-level strength is negligible and 0.3 when it is 

dominant. 

5.2 DESCRIPTION OF THE TWO METHODS 

5.2.1 Method Based on Nonlinear Pushover Analysis 

This method is summarized in Table 5.1 and accounts for the variation of the inflection point 

using nonlinear pushover analysis. The outcome of this method is a continuous calculation of the 

equivalent viscous damping ratio (ξsys), effective period (Τsys), column’s top plastic hinge rotation 

(θc_pl) and instability ratio (θP-Δ) as a function of lateral drift ratio of the bent (Θ). The equivalent 

viscous damping ratio is computed based on the footing rotation, the column’s critical section 

curvature and the location of the inflection point at a given lateral drift. 

This method will be used below to validate the performance of the simplified method for 

some realistic bridge bent cases. It can also be used to analyze bridge bents that fall beyond the 

range of the cases examined here. 

A single validation scenario is examined which involves a 24-ft tall column with 4-ft 

diameter, supporting a deck weight of 695 kips. The column has a pin connection to the footing 

that is considered to be fixed. The column has a 2.1% and 0.93% longitudinal and transverse 

reinforcement ratio, respectively, and a 7.4% axial load ratio at the top of the column. The 

expected unconfined and confined compressive strength of the concrete are equal to 5.2 and 6.9 

ksi, respectively, while the expected yield and  ultimate tensile  strength  of  the #11  longitudinal 
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[M]

H1

H2

Column hinging subsystem 
with cantilever height H2, 
displacement Δss2, and eq. 
viscous damping ξss2 
[Priestley et al. 2007]

Rocking foundation subsystem 
with cantilever height H1, 
displacement Δss1, and eq. 
viscous damping ξss1 [Chapter 4]

Column viscous 
damping, ξc2

Δsys

Ws

F

Wt

Soil hysteretic
damping, ξf_hys

Radiation 
damping, 
ξrad

Column hysteretic 
damping, ξc_hys

Δss1

Δss2

Inflection point

Column viscous 
damping, ξc1

Figure 5.1 Decomposition approach for the analysis of a single-column rocking bent with plastic hinging at the top of the column. 



 

   

    

         

   

         

     

    

   

    

 

  

  

  

  

   

     

   

   

     

 

reinforcing steel are equal to 68 and 95 ksi. A nonlinear pushover analysis is conducted to 

estimate the equivalent viscous damping and plastic rotation of the plastic hinge at the top of the 

column based on the procedure described in Table 5.1 with the modification that a pin 

connection is used at the base of the column. 

Figure 5.3 shows: (a) the moment – curvature analysis of the section at the top of the 

column and the corresponding bilinear idealization; (b) the plastic rotation of the hinge at the top 

of the column; and (c) the equivalent viscous damping ratio. For the latter two, a comparison is 

shown between the nonlinear pushover based method and the Priestley et al. [2007] analytical 

expression for a hinging cantilever column. Priestley et al. [2007] estimate the equivalent viscous 

damping and plastic rotation as follows: 

 
2

y y SPΔ φ H L 3 

Δ yμ Δ Δ

Δ
eq

Δ

μ 1ξ 0.05 0.444
μ π

 
   

 

 pl yθ Δ Δ H 

(5.1)  

(5.2)  

(5.3)  

(5.4)  

where H in this case is equal to 24 ft. 

Based on the shown comparison, it is concluded that the nonlinear pushover analysis 

based method converges to the analytical expressions of Priestley et al. [2007]. 

5.2.2 Proposed Simplified Method 

The proposed simplified method is summarized in Table 5.2. This method assumes that the 

inflection point remains constant with lateral drift. 
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Table 5.1 Step-by-step detailed method, based on nonlinear monotonic analysis, for a single rocking 
bent with plastic hinging at the top of the column. 

1. Preliminary design of rocking foundation and column: 
a. Determine the dimensions of the foundation normal (Lf) and parallel (Bf) to the rocking axis 

and the cross-sectional dimensions of the column based on a preliminary design. 
b. Iteratively calculate the critical contact area ratio (ρac) such that 

f _b c f ac f _b0.95 W q A ρ 1.05 W     

where qc is the bearing capacity of the minimum possible soil-footing contact during rocking, 
Ac, with plan dimensions of Bf and Lf ·ρac, Af is the plan area of the footing, and Wf_b is the 
total vertical force acting at the footing base. 

c. Compute the foundation rocking capacity, Mfc: 

 fc f _b f acM 0.5 W L 1 ρ   

d. Select the column longitudinal reinforcement ratio (ρl) to ensure that the column base yield 
moment (Mcy_b) is not smaller than the foundation rocking capacity. 

2. Set-up calculations for the plastic hinge and column modeling: 
a. Based on a section analysis for an axial load equal to the superstructure weight (Wd), 

construct a bilinear idealization of the moment – curvature behavior and compute the 
nominal and ultimate moment capacities (McN_t and Mcu_t) of the column’s top plastic hinge, 
the yield and ultimate curvatures (φcy_t and φcu_t), and the corresponding flexural rigidities: 

e cN _t cy _tEI M φ

   p cu _t cN _t cu _t cy _tEI M M φ φ  

b. Determine the distance of the critical column section to the point of contra-flexure based on 
the foundation moment capacity (Mfc) and the column’s top nominal moment capacity 
(McN_t): 

cN _t
2N s

fc cN _t

M
H H

M M
 



where Hs is the structural height, and is equal to the sum of the footing height (Hf) and the 
clear column height (Hc). 

c. Compute the strain penetration length (LSP) and the column plastic hinge length (LP): 

ye
SP bl

f
L 0.15 d

ksi
  

ue
P 2N SP 2 SP

ye

fL 0.2 1 H L 0.08 H L
f

 
      

 
 

where fye and fue are the expected yield and ultimate strength of the reinforcing steel and dbl is 
the nominal reinforcing bar diameter. 

3. Conduct an inelastic monotonic pushover analysis of the considered bent based on Figure 5.2, 
and record the lateral force (F) and displacement at the top of the column (Δ), the footing rotation 
(θf) and moment (Mf), and the curvature (φc_t) and moment (Mc_t) at the critical section at the top 
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Table 5.1 (Continued) 

of the column. Note that the length of the top nonlinear beam-column element should be chosen 
so that in conjunction with the number of integration points used, the weight of the integration 
point at the critical section matches the plastic hinge length, LP. 

4. For each time step of the pushover analysis determine the following critical parameters. 
a. Compute the lateral drift ratio, Θ: 

sΘ Δ H

b. Determine the effective system period, Tsys: 

s
sys

W gT 2π
F Δ



where the effective seismic weight, Ws, is equal to the sum of the superstructural weight (Wd) 
at the top of the column and one-third of the column weight (Wc). 

c. Determine the column’s top plastic hinge rotation, θc_pl: 

c _ pl c _t cy _t Pθ φ φ L 

where < > are MacCauley’s brackets that set negative values to zero, i.e., <x> = x if x ≥ 0, 
otherwise <x> = 0. 

d. Determine the instability ratio due to P-Δ effects, θP-Δ: 
s

P Δ
f c _t

W Δθ
M M






e. Determine the equivalent viscous damping ratio of the system period (ξsys) by analysis of the 
rocking (ξss1) and hinging (ξss2) subsystems and integration to the bent-level as element in 
series. 
α. Compute the equivalent damping ratio of the rocking subsystem (ξss1) and its contribution 

to the bent’s lateral displacement (Δss1) as follows: 
i.    Determine the height of the inflection point from the footing base, H1: 

 f
1 f c SP

f c _t

MH H H L
M M

   


ii. Compute the column elastic stiffness (Kc1) and period (Tc1): 

 

 
e

c1 3
1 f

3 EI
K

H H




s
c1

c1

W gT 2π
K



iii. Compute the footing elastic rotational stiffness (Kf_50) and corresponding translational 
period (Tf_50): 

f _50 fcK 300 M 

s
f _50 2

f _50 1

W gT 2π
K H


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Table 5.1 (Continued) 

iv. Compute the footing hysteretic damping ratio (ξf_hys), and the secant, at peak 
displacement, rotational stiffness (Kf_pl) and corresponding translational period (Tf_pl) 
of the rocking foundation that is associated to the footing hysteretic damping: 

If df ≤ 0.5·hf (hf = 1/300 radians)  
, and  f _hysξ 0 f _ plT 0

Else if df ≥ bf (bf = 0.012 radians) 

f
f _hys

ac f

0.90 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  
, or f

f _hys
ac f

0.30 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  

 f _ pl fc f fK M θ h  , and s
f _ pl 2

f _ pl 1

W gT 2π
K H



Otherwise 

f f
f _hys

ac f f

0.90 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     
, or 

f f
f _hys

ac f f

0.30 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     

 f _ pl f f f f _50K M θ M K  , and s
f _ pl 2

f _ pl 1

W gT 2π
K H



Note that the use of the first or the second ξf_hys expression is discussed in Section 
4.7. 

v. Compute the subsystem’s effective period (Tsys1) and equivalent viscous damping 
(ξsys1): 

2 2 2
ss1 c1 f _50 f _ plT T T T  

2 2 2
f _50 f _ plc1

ss1 c1 rad f _hys
ss1 ss1 ss1

T TTξ ξ ξ ξ
T T T
     

       
     

where ξc1 is the column elastic damping, and ξrad is the radiation damping of the 
footing rocking mode. Column elastic damping can be taken as 2% as the column is 
designed to remain nominally elastic, while radiation damping can be assumed as 
approximately equal to 3% if not addressed explicitly using the FEMA 440 document 
[ATC 2005]. 

vi. Compute the subsystem’s contribution to the lateral displacement of the bent (Δss1): 

 ss1 1 f f 1 c1Δ H sin(θ ) M H K   

β. Compute the equivalent damping ratio of the hinging subsystem (ξss2) as follows: 
i.    Determine the distance of the inflection point the column critical section, H2: 

 c _t
2 f c SP

f c _t

M
H H H L

M M
   


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Table 5.1 (Continued) 

ii. Compute the subsystem’s displacement ductility, μΔ2: 

   c _t cy _t P 2 SP
Δ2 2

cy _t 2

3 φ φ L H L
μ 1

φ H
 

 


iii. Compute the subsystem’s equivalent damping ratio, ξsys2: 
If μΔ2 ≤ 1 

Otherwise 
ss2ξ 0.05

   ss2 Δ2 Δ2ξ 0.05 0.444 μ 1 μ π    

γ. Compute the equivalent damping ratio of the bent, ξsys: 

 ss1 ss1 ss2 ss1
sys

ξ Δ ξ Δ Δ
ξ

Δ
   


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Figure 5.2 Idealized model for nonlinear pushover analysis of a single-column rocking bent with plastic hinging at the top of the column. 
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Figure 5.3 Validation of the nonlinear monotonic analysis based method for a column pinned at its 
base and with plastic hinging at its top against Priestley et al. [2007] analytical expressions: 
(a) section analysis of the top of the column; (b) column plastic hinge rotation; and (c) 
equivalent viscous damping ratio. 

86  



 

          
 

  
           

 
    

 

          
          

   
  

 

       
  

   
        

           
 

 
    

 

          
           
          
 

  

 

   
  

 

        
  

       
  

   

 

Table 5.2 Step-by-step simplified equivalent linear displacement-based method for the analysis of a 
single rocking bent with plastic hinging at the top of the column. 

1. Preliminary design of rocking foundation and column: 
a. Determine the dimensions of the foundation normal (Lf) and parallel (Bf) to the rocking axis 

and the cross-sectional dimensions of the column based on a preliminary design. 
b. Iteratively calculate the critical contact area ratio (ρac) such that 

f _b c f ac f _b0.95 W q A ρ 1.05 W     

where qc is the bearing capacity of the minimum possible soil-footing contact during rocking, 
Ac, with plan dimensions of Bf and Lf ·ρac, Af is the plan area of the footing, and Wf_b is the 
total vertical force acting at the footing base. 

c. Compute the foundation rocking capacity, Mfc: 

 fc f _b f acM 0.5 W L 1 ρ   

d. Select the column longitudinal reinforcement ratio (ρl) to ensure that the column base yield 
moment (Mcy_b) is not smaller than the foundation rocking capacity. 

2. Set-up calculations for the hinging subsystem: 
a. Based on a section analysis determine the yield curvature (φcy_t) and nominal moment 

capacity (McN_t) at the top of the column for an axial load equal to the superstructure 
weight(Wd). Alternatively, the yield curvature and nominal moment capacity can be estimated 
as: 

cy _t ye cφ 2.25 ε D  , or cy _t ye cφ 2.10 ε h 

     cN _t cy _tg e g
M EI φ EI EI   

 

where εye is the expected yield strain of the reinforcing steel, Dc is the column diameter for 
circular columns, hc is the section depth for rectangular columns, (EI)g is the gross flexural 
rigidity and (EI)e/(EI)g is the elastic stiffness ratio that can be obtained from Caltrans SDC 
[2013a]. 

b. Determine the cantilever height, H2: 

 cN _t
2 f c

fc cN _t

M
H H H

M M
  



where Hf is the footing height and Hc is the clear column height. 
c. Compute the strain penetration length, LSP: 

ye
SP bl

f
L 0.15 d

ksi
  

where fye is the expected yield strength of the reinforcing steel and dbl is the nominal 
reinforcing bar diameter . 

d. Calculate the yield displacements when 50% and 100% of the column-top nominal moment 
capacity is mobilized, Δy2a and Δy2, respectively: 

 
2

y2a cy _t 2 SPΔ 0.5 φ H L 3    , and  
2

y2 cy _t 2 SPΔ φ H L 3  
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Table 5.2 (Continued) 

3. Set-up calculations for the rocking subsystem: 
a. Determine the effective seismic weight, Ws: 

s d cW W 0.33 W  

where Wd is the superstructural weight at the top of the column, and Wc is the column weight. 
b. Determine the cantilever height, H1: 

1 f c 2H H H H  

c. Determine the footing elastic rotational stiffness (Kf_50) and corresponding translational 
period (Tf_50): 

f _50 fcK 300 M  , and s
f _50 2

f _50 1

W gT 2π
K H



d. Determine the fixed base stiffness (Kc1) and period (Tc1) of the flexible column: 

 

 
e

c1 3
1 f

3 EI
K

H H





, and s

c1
c1

W gT 2π
K



where for simplicity the effective flexural rigidity, (EI)e, can be taken equal to that of the top 
column section determined previously, for a uniform section column. 

e. Calculate the lateral displacement due to the column flexibility that corresponds to the 
mobilization of the footing rocking moment capacity, Δc1: 

 c1 fc 1 c1Δ M H K 

f. Calculate the yield displacements when 50% and 100% of the footing rocking moment 
capacity is mobilized, Δy1a and Δy1, respectively: 

 y1a c1 1 fΔ 0.5 Δ H sin 0.5 h     , and  y1 c1 1 fΔ Δ H sin b  

where hf and bf are equal to 1/300 and 0.012 radians, respectively. 
4. Set-up calculations at the bent-level: 

a. Determine the nominal lateral capacity (Fc) and the yield displacements at 50% (Δya) and 
100% (Δy) of the lateral capacity: 

   c fc cN _t f cF M M H H   , ya y1a y2aΔ Δ Δ  , and y y1 y2Δ Δ Δ 

5. Assume a trial input system lateral displacement, Δsys. For first iteration only, set Δsys equal to Δy. 
6. Compute the lateral force (F): 

If Δsys < Δya 

Else if Δsys > Δy 

c sys yaF 0.5 F Δ Δ  

cF F

   c sys ya sys yF 0.5 F 1 Δ Δ Δ Δ      

Otherwise 
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Table 5.2 (Continued) 

7. Calculations to determine equivalent viscous damping for the hinging subsystem: 
a. Determine the total displacement of the subsystem (Δss2):  

If Δsys < Δya  

Else if Δsys > Δy 

Otherwise 

   ss2 y2a cΔ Δ F 0.5 F  

  2
ss2 y2 sys y

1 2

HΔ Δ Δ Δ
H H

   


  c
ss2 y2a y2 y2a

c

F 0.5 FΔ Δ Δ Δ
0.5 F
 

   


b. Determine the displacement ductility (μΔ2): 

ss2
Δ2

y 2

Δμ
Δ



c. Calculate the equivalent viscous damping of the subsystem (ξss2): 

If μΔ2 < 1 

Otherwise 

ss2ξ 0.05

   ss2 Δ2 Δ2ξ 0.05 0.444 μ 1 μ π    

8. Calculations to determine equivalent viscous damping for the rocking subsystem: 
a. Determine the total displacement of the subsystem (Δss1):  

If Δsys < Δya  

Else if Δsys > Δy 

Otherwise 

   ss1 y1a cΔ Δ F 0.5 F  

  1
ss1 y1 sys y

1 2

HΔ Δ Δ Δ
H H

   


  c
ss1 y1a y1 y1a

c

F 0.5 FΔ Δ Δ Δ
0.5 F
 

   


b. Determine the footing rotation (θf): 

ss1 c1 c
f

1

Δ Δ F Fθ asin
H

  
  

 

c. Compute the footing hysteretic damping ratio (ξf_hys), and the secant, at peak displacement, 
rotational stiffness (Kf_pl) and corresponding translational period (Tf_pl) of the rocking 
foundation that is associated to the footing hysteretic damping: 
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Table 5.2 (Continued) 

If θf ≤ 0.5·hf (hf = 1/300 radians) 

f _hysξ 0 , and f _ plT 0

Else if θf ≥ bf (bf = 0.012 radians) 

Otherwise 

f
f _hys

ac f

0.90 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  
, or f

f _hys
ac f

0.30 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  

 f _ pl fc f fK M θ h  , and s
f _ pl 2

f _ pl 1

W gT 2π
K H



f f
f _hys

ac f f

0.90 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     
, or 

f f
f _hys

ac f f

0.28 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     

 f _ pl 1 f 1 f _50K F H θ F H K    , and s
f _ pl 2

f _ pl 1

W gT 2π
K H



Note that the use of the first or the second ξf_hys expression is discussed in Section 4.7. 
d. Calculate the subsystem’s effective period (Tss1) and equivalent viscous damping (ξss1): 

2 2 2
ss1 c1 f _50 f _ plT T T T  

2 2 2
f _50 f _ plc1

ss1 c1 rad f _hys
ss1 ss1 ss1

T TTξ ξ ξ ξ
T T T
     

       
     

where ξc1 is the column elastic damping, and ξrad is the radiation damping of the footing 
rocking mode. Column elastic damping can be taken as 2% as the column is designed to 
remain nominally elastic, while radiation damping can be assumed as approximately equal to 
3% if not addressed explicitly; e.g. using the FEMA 440 document [ATC 2005]. 

9. Determine the system equivalent viscous damping (ξsys) and effective period (Tsys) at the bent-
level: 

ss1 ss1 ss2 ss2
sys

sys

ξ Δ ξ Δξ
Δ

  


s
sys

sys

W gT 2π
F Δ



10. Compute the new lateral displacement at the top of the column (Δsys): 

 
α

sys sys
sys

0.07Δ Sd T ,0.05
0.02 ξ
 

  
  

where α = 0.5 for a site at which the elastic design spectrum (Sd) is dominated by broadband 
motions, or α = 0.25 for the case near-fault pulse-like motions. 
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Table 5.2 (Continued) 

11. Use Δsys as input value and repeat steps 5 to 10. Convergence occurs when computed system 
displacement at step 10 is no more than 2% different from the input displacement used in step 5. 

12. When convergence has been achieved and if Δsys is larger than Δy, estimate the column hinge’s 
plastic rotation (θc_pl) and check if P-Δ instability ratio (θP-Δ) exceeds the allowable limit: 

  
 









 , and s sys cN _t fc
P Δ

fc cN _t fc cN _t

W Δ 0.2 M 0.3 M
θ

M M M M

   
 

 

where < > set negative values to zero, i.e., <x> = x if x ≥ 0, otherwise <x> = 0. 
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5.3 COMPARISON OF NONLINEAR PUSHOVER ANALYSIS BASED METHOD AND 
SIMPLIFIED METHOD 

5.3.1 Considered Cases 

A set of 16 bridge bents are examined here to compare the simplified and the detailed method. 

The bridge bents studied here include a square foundation and a single circular column 

supporting the deck weight. The bridge bents are expected to resist seismic action with plastic 

hinging at the top of the column in the longitudinal direction, while no plastic hinging develops 

in the transverse direction. The main characteristics of each case are shown in Table 5.3. The key 

parameters altered were: (i) the critical contact area ratio of the rocking foundation (ρac); (ii) the 

clear column height (Hc); (iii) the longitudinal reinforcement ratio of the column (ρl); and (iv) the 

deck weight (Wd). For simplicity, the footing height and embedment were equal to 6 and 9 ft, 

respectively, for all cases. In addition, the concrete and reinforcing steel strength characteristics, 

and the rebar diameter were as described in Section 5.2.2. 

For the first four models, the critical contact area ratio is equal to 0.125, the clear column 

height is equal to 25 or 50 ft, the longitudinal reinforcing steel ratio is equal to 1% or 2.5%, and 

the deck weight is equal to 1500 kip, while the ratio between the yield moment at the base of the 

column (Mcy_b) and the footing moment capacity (Mfc) is approximately equal to 1 to prevent 

damage at the bottom of the column. Hence, models 1 to 4 are characterized by: (i) a fairly 

constant lower-bound strength ratio between the nominal moment capacity at the top of the 

column (McN_t) and the foundation moment capacity (Mfc) that has a value between 1.26 and 

1.36; and (ii) a wider-range increasing column-to-footing elastic flexibility ratio (Tc/Tf_50), where 

Tc is the double-bending fixed-base period of the column and Tf_50 is the single bending period 

due to the initial rotational stiffness of the rocking foundation, that has a value between 0.47 and 

0.78. Models 5 to 8 are similar to models 1 to 4, but the critical contact area ratio is equal to 

0.071 instead of 0.125. 

Models 9 to 16 represent a scenario where the column-to-footing strength ratio is not near 

to 1 as it was in models 1 to 8. This could be a common case for the non-critical bents of a bridge 

with different span lengths and/or column heights where the same foundation size and column 

size/reinforcement is selected. With constructability in mind, each model in this second set has 

the same foundation size and column size/reinforcement with the corresponding model from the 
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first set, but the deck weight is reduced to 1000 kip. The result is that models 9 to 12, for 

example, have a strength ratio between 1.46 and 1.71, compared to models 1 to 4 where this ratio 

ranged between 1.26 and 1.36, while the column-to-footing flexibility ratios are similar between 

the two sets. 

Lastly, it is noted that all models are developed so that: (i) the strength ratio of the bents 

in the transverse direction is between 0.2 and 0.25; (ii) the normalized moment-to-shear ratios 

are large enough to ensure that column is flexure (not shear) dominated and the footing is 

rocking (not sliding) dominated; and (iii) the required soil bearing capacity at the critical contact 

area is less than about 150 ksf. 

5.3.2 Comparison Results 

Figures 5.4 to 5.7 compare the simplified method to the more detailed nonlinear pushover based 

method for the examined cases. Figure 5.4 compares the monotonic pushover curves as obtained 

from the two methods, with the successive yield points being identified. In all cases the results of 

the simplified method agree fairly well with these of the detailed method. More specifically, the 

drift ratio at the bent’s nominal lateral capacity for the simplified method falls in between the 

drift ratios at which the nominal capacity at the top of the column and the footing capacity are 

mobilized, while the drift ratio corresponding to the ultimate curvature of the plastic hinge is 

only slightly overestimated. Figure 5.5 plots the height of the inflection point from the footing 

base normalized by the structural height as a function of the drift ratio. The variation of the 

inflection point location is relatively narrow and close to the location assumed by the column-to-

footing strength ratio. 

Figure 5.6 compares the footing rotation and the column hinge plastic rotation as a 

function of the drift ratio. For stiff columns (e.g., models 1, 5, 9 and 13) the simplified method 

results in overestimation of the footing rotation and underestimation of the column plastic 

rotation. With increasing column flexibility (e.g., models 4, 8, 12 and 16), the trend appears to 

reverse. Comparison of the models with ρac = 0.125 and 0.071 shows that the accuracy of the 

simplified method is not sensitive to variations in critical contact area ratio or the column/footing 

strength ratio. 

Figure 5.7 compares the equivalent viscous damping ratio of the two subsystems as well 

as of the entire system versus the lateral drift ratio. The equivalent viscous damping ratio at the 
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bent-level is well predicted by the simplified method, particularly for the cases of flexible 

columns. For stiff columns, an underestimation is observed at small drift ratios; nevertheless, the 

difference is practically negligible for drift ratios larger than approximately 1.5%. 

Overall, the simplified method is found sufficient and practical to calculate the equivalent 

viscous damping ratio and plastic rotation at the top of the column. It is also shown that the 

critical contact area ratio and the strength ratio between the column plastic hinge and the rocking 

footing do not affect the efficiency of the simplified method, as opposed to the column-to-

footing elastic flexibility ratio. Hence, the detailed method presented in Table 5.1 may be used 

for cases that fall beyond the column-to-footing elastic flexibility ratio range examined here, in 

particular for very stiff/short columns. 
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Table 5.3 Model parameters of single-column rocking bents with plastic hinging at the top of the column. 

No. ρac 

Hc 
(ft) 

ρl 
(%) 

Wd 
(kip) 

Lf 
(ft) 

Dc 
(ft) 

Ws 
(kip) 

Wf_b 
(kip) 

Mfc 
(kip-ft) 

Mcy_b 
/ MfN 

McN_t 
/ Mfc CN Cr_T 

Wd / 
(fce·Ag) 

McN_t / 
(VN·Dc) 

Mfc / 
(VN·Lf) 

qc 
(ksf) 

Tf_50 
(s) 

Tc 
(s) 

Tc / 
Tf_50 

1 0.125 25 1 1500 12.5 6.67 1543 1813 9913 1.03 1.29 0.47 0.21 0.057 2.6 1.1 93 0.78 0.37 0.47 
2 0.125 25 2.5 1500 12.5 5.33 1528 1770 9681 1.03 1.35 0.48 0.20 0.090 3.3 1.1 91 0.79 0.44 0.56 
3 0.125 50 1 1500 18.0 8.33 1635 2290 18037 1.01 1.26 0.44 0.20 0.037 3.7 1.4 57 1.08 0.72 0.66 
4 0.125 50 2.5 1500 18.0 6.50 1582 2140 16851 1.02 1.36 0.45 0.19 0.060 5.0 1.3 53 1.10 0.86 0.78 
5 0.071 25 1 1500 13.0 6.90 1546 1837 11086 1.00 1.25 0.52 0.23 0.054 2.5 1.1 152 0.74 0.35 0.47 
6 0.071 25 2.5 1500 13.0 5.50 1529 1791 10810 1.00 1.32 0.53 0.23 0.084 3.2 1.0 148 0.75 0.42 0.56 
7 0.071 50 1 1500 18.5 8.67 1646 2345 20144 1.00 1.25 0.49 0.22 0.034 3.6 1.3 96 1.02 0.67 0.65 
8 0.071 50 2.5 1500 18.5 6.75 1589 2181 18733 1.01 1.36 0.50 0.21 0.056 4.8 1.3 89 1.04 0.80 0.77 
9 0.091 25 1 1000 12.5 6.67 1043 1313 7461 1.22 1.56 0.59 0.23 0.038 2.8 1.0 93 0.74 0.32 0.43 

10 0.090 25 2.5 1000 12.5 5.33 1028 1270 7227 1.28 1.71 0.62 0.23 0.060 3.7 0.9 91 0.75 0.37 0.49 
11 0.098 50 1 1000 18.0 8.33 1135 1790 14539 1.16 1.46 0.56 0.23 0.025 4.0 1.3 57 1.00 0.62 0.62 
12 0.096 50 2.5 1000 18.0 6.50 1082 1640 13344 1.21 1.64 0.58 0.22 0.040 5.4 1.2 53 1.02 0.72 0.71 
13 0.052 25 1 1000 13.0 6.90 1046 1337 8237 1.22 1.55 0.65 0.25 0.036 2.7 0.9 152 0.71 0.30 0.42 
14 0.051 25 2.5 1000 13.0 5.50 1029 1291 7960 1.26 1.70 0.67 0.25 0.056 3.6 0.9 148 0.71 0.35 0.49 
15 0.056 50 1 1000 18.5 8.67 1146 1845 16109 1.18 1.47 0.62 0.25 0.023 3.8 1.2 96 0.96 0.57 0.60 
16 0.055 50 2.5 1000 18.5 6.75 1089 1681 14693 1.23 1.67 0.64 0.24 0.037 5.2 1.1 89 0.97 0.67 0.69 

Notation : ρac = critical contact area ratio; Hc = clear column height; ρl = longitudinal steel reinforcement ratio; Wd = deck weight; Ws = seismic weight; Wf_b = total weight; 
Mfc = footing moment capacity neglecting soil passive resistance; Mcy_b = yield moment at the base of the column; McN_t = nominal moment capacity at the top of the 
column; CN = strength ratio in the longitudinal direction = (Mfc + McN_t)/(Ws ·Ht), where Ht = Hc + 6ft; Cr_T = strength ratio in the transverse direction = Mfc/(Ws·Ht); 
VN = lateral strength corresponding to CN; qc = required soil bearing capacity at the critical contact area; Tf_50 = single-bending period due to the initial rotational 
stiffness of the foundation; Tc = double-bending fixed-base period of the column. 
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Figure 5.4 Monotonic analysis results for the two methods; lateral force (F) normalized by the seismic weight (Ws) versus drift ratio (Θ). 
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Figure 5.5 Monotonic analysis results for the two methods; height of inflection point from the footing base (H1) normalized by the structural 
height (Hs) versus drift ratio (Θ). 
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Figure 5.6 Monotonic analysis results for the two methods; footing rotation and column’s top hinge plastic rotation versus drift ratio (Θ). 
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Figure 5.7 Monotonic analysis results for the two methods; equivalent viscous damping ratio (ξ) versus drift ratio (Θ) at the bent-level as well 
as for the rocking and hinging sub-systems. 
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6 Bridge System Level Analysis 

6.1 TRANSVERSE DIRECTION 

Figure 6.1 shows at deformed state the plan view of a single-column bent bridge excited in the 

transverse direction. Typically, the lateral displacement pattern of the deck is affected by 

multiple modes of response; it depends on the bridge geometry, the relative stiffness between the 

superstructure and the bents, the lateral restraint of the abutments, and the level of inelasticity of 

response. Previous researchers [e.g. Dwairi and Kowalsky 2006; Priestley et al. 2007; Sadan et 

al. 2012] have analyzed this problem through an iterative eigenvalue analysis that uses the 

effective (secant) lateral stiffness for the abutments and bents to determine the lateral 

displacement pattern of the deck and the corresponding SDOF idealization. This section presents 

a more practical approach to account for the important abutment and modal participation effects 

in the displacement-based analysis method for bridge systems with rocking foundations. Two 

modification factors, explained below, are introduced to partially account for the bent-to-bent 

interaction and the restraint of the abutments. 

6.1.1 Mass Participation Correction Factor 

The mass participation correction factor (Cm) is used to reduce the tributary seismic mass at the 

top of the each bent to account for the effective mass that participates to the transverse response 

of the bridge. The mass participation correction factor depends on the modal properties of the 

bridge at different levels of lateral response. Here the same mass participation factor is used for 

all bents of a bridge for simplicity. Cm ranges between 0.7 – 0.9 based on previous studies 

[Dwairi and Kowalsky 2006; Sadan et al. 2012] that have analyzed many different bridge 

configurations through modal analysis with effective (secant) stiffness properties for the 

abutments and bents. 
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Figure 6.1 Deformed state plan view schematic of a single-column bent bridge excited in the transverse direction. 



 

   

   

   

 

  

      

   

   

   

          

 

     

  

   

     

      

 

   

    

   

    

   

  

 

6.1.2 Abutment Strength Correction Factor 

The abutment strength correction factor (Ca) is used to account for the effect of the abutment on 

the lateral displacement of the bents by uniformly lumping the relative abutment strength surplus 

or deficit to the individual bents. The abutment strength correction factor is obtained as: 

c c
i 1,n i 2...n 1

a
s s

i 1,n i 2...n 1

1 F F
C

1 W W
  

  






 

 
(6.1)  

where Fc is the lateral capacity of each bent or abutment, Ws is the corresponding tributary 

seismic weight that for the bents also includes one-third of the column weight, and n is the total 

number of the bents and abutments. The numerator of Eqn. (6.1) is equal to the increase of the 

bridge lateral capacity when the abutment strength is considered, while the denominator is equal 

to the corresponding increase of the bridge seismic weight. Hence, Ca can be greater or smaller 

than one. 

Within the displacement-based analysis of each individual bent presented here, the 

abutment strength correction factor is used to modify both the bent strength and stiffness keeping 

the yield displacement unchanged. Sensitivity of the bent’s response to the exact value of Ca can 

be assessed by an upper bound estimate in which the abutment lateral capacity includes non-

ductile resisting mechanisms such as shear keys, and a lower bound estimate where such 

mechanisms are neglected. 

6.1.3 Step-by-Step Procedure 

Table 6.1 presents the step-by-step displacement-based method for the analysis of a single-

column bent bridge in the transverse direction with columns on rocking shallow foundations at 

the base. Table 6.1 would also be applicable to multi-column bent bridges if a pin connection is 

used between the top of the columns and the deck, by using from step 4 onwards the seismic 

weight corresponding to a single column of the bent. 
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6.2 LONGITUDINAL DIRECTION 

Figure 6.2(a,b) shows at deformed state an elevation view of the entire bridge as well as 

of a single bent for uniaxial excitation in the longitudinal direction. Figure 6.2(c,d,e) shows a 

schematic representation of the bridge with a system of nonlinear spring-dashpot elements. It 

also shows the various stages of the proposed displacement-based method of analysis that 

replaces nonlinear force resisting mechanisms with equivalent linear elements. First, the rocking 

foundation and plastic hinge at the top of the column within each bent are integrated (as elements 

in series) into an equivalent linear viscoelastic element, while in the final stage, the equivalent 

linear elements representing the bents and the abutments are integrated into an equivalent linear 

viscoelastic element for the whole bridge. 

Table 6.2 presents the step-by-step displacement-based method for the analysis of a 

single-column bent bridge in the longitudinal direction with columns on rocking shallow 

foundations and plastic hinging at their top. The entire mass is considered effective in the 

longitudinal response. 
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Table 6.1 Step-by-step displacement-based method for the analysis of a single-column bent bridge in 
the transverse direction with columns on rocking shallow foundations at the base. 

Abutment strength correction factor, Ca 

1. For each bridge bent: 
a. Determine the dimensions of the foundation normal (Lf) and parallel (Bf) to the rocking axis 

and the cross-sectional dimensions of the column based on a preliminary design. 
b. Iteratively calculate the critical contact area ratio (ρac) such that 

f _b c f ac f _b0.95 W q A ρ 1.05 W     

where qc is the bearing capacity of the minimum possible soil-footing contact during rocking, 
Ac, with plan dimensions of Bf and Lf ·ρac, Af is the plan area of the footing, and Wf_b is the 
total vertical force acting at the footing base. 

c. Compute the foundation rocking capacity, Mfc: 

 fc f _b f acM 0.5 W L 1 ρ   

d. Select the column longitudinal reinforcement ratio (ρl) to ensure that the column base yield 
moment (Mcy_b) is not smaller than the foundation rocking capacity. 

e. Determine the lateral seismic capacity, Fc: 

c fcF M H

where H is equal to the height of the deck centroid from the footing base. 
f. Determine the effective seismic weight, Ws: 

s d cW W 0.33 W  

where Wd is the tributary superstructural weight at the top of the column, and Wc is the 
column weight. 

2. For each bridge abutment: 
a. Based on a preliminary design, determine the lateral seismic capacity (Fc) provided by the 

abutment. 
b. Determine the effective seismic weight (Ws) at the abutment. 

3. Calculate the abutment strength correction factor (Ca): 

c c
i 1,n i 2...n 1

a
s s

i 1,n i 2...n 1

1 F F
C

1 W W
  

  






 

 

where n is equal to the sum of the abutments and bents of the bridge. 
Iterative analysis of bent i 
4. Compute the lateral displacement at the top of the column due to its flexibility when the 

foundation has mobilized its moment capacity (Δc) and the column fixed-base period (Tc): 

        , and  m s
c

a c

C W g
T 2π

C K





where Kc is an estimate of the column lateral stiffness with Ieff ≈ 0.5·Ig, and Cm is the mass 
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Table 6.1 (Continued) 

participation factor that can be bounded between 0.7 and 0.9. 
5. Compute the elastic rotational stiffness of the foundation (Kf_50), and the corresponding 

translational period (Tf_50): 

      , and  

 
m s

f _50 2
a f _50

C W g
T 2π

C K H





6. Compute the lateral displacement corresponding to first yield of the rocking foundation (Δy1) and 
to the mobilization of the rocking footing capacity (Δy2): 

            , and y2 c fΔ Δ H sin(b )  

where hf = 1/300 rad and bf = 0.012 rad. 
7. Assume a trial input system lateral displacement (Δsys). For first iteration, Δsys can be set equal to 

Δy2. 
8. Compute the lateral force, F: 

If Δsys ≤ Δy1 

Else if Δsys ≥ Δy2 

Otherwise 

9. Compute the footing rotation (θf): 

c sys y1F F Δ Δ 

cF F

sys y1
c

y2 y1

Δ Δ
F 0.5F 1

Δ Δ
 

  
  

 sys c c
f

Δ Δ F F
θ asin

H
  

  
 

10. Compute the footing hysteretic damping ratio (ξf_hys), and the secant, at peak displacement, 
rotational stiffness (Kf_pl) and corresponding translational period (Tf_pl) of the rocking foundation 
that is associated to the footing hysteretic damping: 
If θf ≤ 0.5·hf 

f _hysξ 0 , and f _ plT 0

Else if θf ≥ bf 

f
f _hys

ac f

0.90 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  
, or f

f _hys
ac f

0.30 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  

 f _ pl fc f fK M θ h  , and  

 
m s

f _ pl 2
a f _ pl

C W g
T 2π

C K H





Otherwise 
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Table 6.1 (Continued) 

f f
f _hys

ac f f

0.90 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     
, or f f

f _hys
ac f f

0.30 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     

 f _ pl f f _50K F H θ F H K    , and  

 
m s

f _ pl 2
a f _ pl

C W g
T 2π

C K H





Note that the use of the first or the second ξf_hys expression is discussed in Section 4.7. 
11. Calculate the system’s effective period (Tsys) and equivalent viscous damping (ξsys): 

2 2 2
sys c f _50 f _ plT T T T  

2 2 2

f _50 f _ plc
sys c rad f _hys

sys sys sys

T TTξ ξ ξ ξ
T T T
     

       
     
     

where ξc is the column “elastic” damping, and ξrad is the radiation damping of the footing rocking 
mode. Column “elastic” damping can be taken as 2% as the column is designed to remain 
nominally elastic, while radiation damping can be assumed as approximately equal to 3% if not 
addressed explicitly; e.g. using the FEMA 440 document [ATC 2005]. 

12. Compute the new lateral displacement of the system (Δsys): 

 
α

sys sys
sys

0.07Δ Sd T ,0.05
0.02 ξ
 

  
  

where α = 0.5 for a site at which the elastic design spectrum (Sd) is dominated by broadband 
motions, or α = 0.25 for the case of near-fault pulse-like motions. 

13. Use new Δsys as input value and repeat steps 8 to 13. Convergence occurs when computed system 
displacement at step 13 is no more than 2% different from the input displacement at step 8. 

14. For the converged displacement, check if P-Δ instability ratio (θP-Δ) exceeds the allowable limit: 

s sys
P Δ

W Δ
θ 0.3

F H


 


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Figure 6.2 Summary of the displacement-based method for the analysis of a single-column bent bridge in the longitudinal direction with 
columns on rocking shallow foundations and plastic hinging at their top: (a) Elevation view of the bridge at deformed state; (b) 
elevation view of a bent at deformed state; (c) representation of the bridge response coupling in parallel pairs of viscoelastic 
elements that represent bents and abutments and integration to a single viscoelastic element. 



 

        
         

 

   
  

           
 

  
 

          
          

   
  

 

       
   

  
 

         
 

   
        

        
 

    

 

          
           
          
 

     

 

   
  

 

     

Table 6.2 Step-by-step displacement-based method for the analysis of a single-column bent bridge in 
the longitudinal direction with columns on rocking shallow foundations and plastic hinging at 
their top. 

Set-up procedure for bent i 
1. Preliminary design of rocking foundation and column: 

a. Determine the dimensions of the foundation normal (Lf) and parallel (Bf) to the rocking axis 
and the cross-sectional dimensions of the column based on a preliminary design. 

b. Iteratively calculate the critical contact area ratio (ρac) such that 

f _b c f ac f _b0.95 W q A ρ 1.05 W     

where qc is the bearing capacity of the minimum possible soil-footing contact during rocking, 
Ac, with plan dimensions of Bf and Lf ·ρac, Af is the plan area of the footing, and Wf_b is the 
total vertical force acting at the footing base. 

c. Compute the foundation rocking capacity, Mfc: 

 fc f _b f acM 0.5 W L 1 ρ   

d. Select the column longitudinal reinforcement ratio (ρl) to ensure that the column base yield 
moment (Mcy_b) is not smaller than the foundation rocking capacity. 

2. Determine the effective seismic weight, Ws: 

s d cW W 0.33 W  

where Wd is the tributary superstructural weight at the top of the column, and Wc is the column 
weight. 

3. Initial calculations for the hinging subsystem: 
a. Based on a section analysis determine the yield curvature (φcy_t) and nominal moment 

capacity (McN_t) at the top of the column for an axial load equal to the superstructure weight 
(Wd). Alternatively, the yield curvature and nominal moment capacity can be estimated as: 

cy _t ye cφ 2.25 ε D  , or cy _t ye cφ 2.10 ε h 

     cN _t cy _tg e g
M EI φ EI EI   

 

where εye is the expected yield strain of the reinforcing steel, Dc is the column diameter for 
circular columns, hc is the section depth for rectangular columns, (EI)g is the gross flexural 
rigidity and (EI)e/(EI)g is the elastic stiffness ratio that can be obtained from Caltrans SDC 
[2013a]. 

b. Determine the equivalent cantilever height (i.e. distance to inflection point), H2: 

 cN _t
2 f c

fc cN _t

M
H H H

M M
  



where Hf is the footing height and Hc is the clear column height. 
c. Compute the strain penetration length, LSP: 

ye
SP bl

f
L 0.15 d

ksi
  

where fye is the expected yield strength of the reinforcing steel and dbl is the nominal 
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Table 6.2 (Continued) 

reinforcing bar diameter. 
d. Calculate the yield displacements when 50% and 100% of the column-top nominal moment 

capacity is mobilized, Δy2a and Δy2, respectively: 

 
2

y2a cy _t 2 SPΔ 0.5 φ H L 3    , and  
2

y2 cy _t 2 SPΔ φ H L 3  

4. Initial calculations for the rocking subsystem: 
a. Determine the equivalent cantilever height (i.e. distance to inflection point), H1: 

1 f c 2H H H H  

b. Determine the footing elastic rotational stiffness (Kf_50) and corresponding translational 
period (Tf_50): 

      , and s
f _50 2

f _50 1

W gT 2π
K H



c. Determine the fixed base stiffness (Kc1) and period (Tc1) of the flexible column: 

 
















, and s

c1
c1

W gT 2π
K



where for simplicity the effective flexural rigidity, (EI)e, can be taken equal to that of the top 
column section determined previously, for a uniform section column. 

d. Calculate the lateral displacement due to the column flexibility that corresponds to the 
mobilization of the footing rocking moment capacity, Δc1: 

 c1 fc 1 c1Δ M H K 

e. Calculate the yield displacements when 50% and 100% of the footing rocking moment 
capacity is mobilized, Δy1a and Δy1, respectively: 

               , and  y1 c1 1 fΔ Δ H sin b  

where hf and bf are equal to 1/300 and 0.012 radians, respectively. 
5. Determine the nominal bent lateral capacity (Fbc) and the yield displacements at 50% (Δya) and 

100% (Δy) of the bent’s lateral capacity: 

   bc fc cN _t f cF M M H H   , ya y1a y2aΔ Δ Δ  , and y y1 y2Δ Δ Δ 

Set-up procedure for the abutments 
6. Determine the effective seismic weight (Ws) at each abutment. 
7. Compute the average backfill passive pressure capacity (Fab_pc) and effective stiffness (Kab_p) at 

the two abutments based on Caltrans SDC [2013a]. 
8. If appropriate (e.g. PTFE slider bearings, simply supported abutment diaphragm on spread 

footing), calculate the seismic resisting friction capacity at each abutment (Fab_fc) and the 
corresponding yield displacement (Δy): 

ab _fc f abF μ P 

where Pab is the static axial load on the sliding interface and μf is the appropriate dynamic friction 
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Table 6.2 (Continued) 

coefficient. 
Initiation of iterative procedure for bridge-level analysis 
9. Assume a trial input system lateral displacement (Δsys). For first iteration, Δsys should be sufficient 

to mobilize the rocking foundations and the plastic hinges at the top of the columns at all bents 

  i 2  ... n 1
sys yΔ max Δ  

where n is the total number of bents and abutments for the bridge. 
Equivalent viscous damping at bent i 
10. Compute the lateral force at the bent (Fb): 

If Δsys < Δya 

Else if Δsys > Δy 

Otherwise 

b bc sys yaF 0.5 F Δ Δ  

b bcF F

   b bc sys ya sys yF 0.5 F 1 Δ Δ Δ Δ      

11. Calculations to determine equivalent viscous damping for the hinging subsystem of the bent: 
a. Determine the total displacement of the subsystem (Δss2):  

If Δsys < Δya  

Else if Δsys > Δy 

Otherwise 

   ss2 y2a b bcΔ Δ F 0.5 F  

  2
ss2 y2 sys y

1 2

HΔ Δ Δ Δ
H H

   


  b bc
ss2 y2a y2 y2a

bc

F 0.5 FΔ Δ Δ Δ
0.5 F
 

   


b. Determine the displacement ductility (μΔ2): 

Δ2 ss2 y2μ Δ Δ

c. Calculate the equivalent viscous damping of the subsystem (ξss2): 
If μΔ2 < 1 

Otherwise 
ss2ξ 0.05

   ss2 Δ2 Δ2ξ 0.05 0.444 μ 1 μ π    

12. Calculations to determine equivalent viscous damping for the rocking subsystem of the bent: 
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Table 6.2 (Continued) 

a. Determine the total displacement of the subsystem (Δss1): 
If Δsys < Δya 

Else if Δsys > Δy 

Otherwise 

   ss1 y1a b bcΔ Δ F 0.5 F  

  1
ss1 y1 sys y

1 2

HΔ Δ Δ Δ
H H

   


  b bc
ss1 y1a y1 y1a

bc

F 0.5 FΔ Δ Δ Δ
0.5 F
 

   


b. Determine the footing rotation (θf): 

ss1 c1 b bc
f

1

Δ Δ F Fθ asin
H

  
  

 

c. Compute the footing hysteretic damping ratio (ξf_hys), and the secant, at peak displacement, 
rotational stiffness (Kf_pl) and corresponding translational period (Tf_pl) of the rocking 
foundation that is associated to the footing hysteretic damping: 
If θf ≤ 0.5·hf (hf = 1/300 radians)  

, and  f _hysξ 0 f _ plT 0

Else if θf ≥ bf (bf = 0.012 radians) 

f
f _hys

ac f

0.90 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  
, or f

f _hys
ac f

0.30 3 bξ 4
2π 2.6 ρ 1 θ

 
   

  

 f _ pl fc f fK M θ h  , and s
f _ pl 2

f _ pl 1

W gT 2π
K H



Otherwise 

f f
f _hys

ac f f

0.90 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     
, or 

f f
f _hys

ac f f

0.30 3 θ 0.5 hξ 4 1
2π 2.6 ρ 1 b 0.5 h

    
      

     

 f _ pl b 1 f b 1 f _50K F H θ F H K    , and s
f _ pl 2

f _ pl 1

W gT 2π
K H



Note that the use of the first or the second ξf_hys expression is discussed in Section 4.7. 
d. Calculate the subsystem’s effective period (Tss1) and equivalent viscous damping (ξss1): 

2 2 2
ss1 c1 f _50 f _ plT T T T  

2 2 2
f _50 f _ plc1

ss1 c1 rad f _hys
ss1 ss1 ss1

T TTξ ξ ξ ξ
T T T
     

       
     
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Table 6.2 (Continued) 

where ξc1 is the column “elastic” damping, and ξrad is the radiation damping of the footing 
rocking mode. Column “elastic” damping can be taken as 2% as the column is designed to 
remain nominally elastic, while radiation damping can be assumed as approximately equal to 
3% if not addressed explicitly; e.g. using the FEMA 440 document [ATC 2005]. 

e. Determine the equivalent viscous damping (ξb) at the bent-level: 

ss1 ss1 ss2 ss2
b

sys

ξ Δ ξ Δξ
Δ

  


Equivalent viscous damping at the abutments 
13. For the abutments’ passive pressure seismic resisting mechanism, compute the displacement 

ductility demand (μΔ), the resisting lateral force (Fab_p), and the equivalent viscous damping 
(ξab_p): 

If μΔ < 1 

Otherwise 

Δ sys yμ Δ Δ

ab _ p ab _ p sysF K Δ 

ab _ p ab _ p _elξ ξ

ab _ p ab _ pcF F

0.127
ab _ p Δ ab _ p _el 0.336

Δ

1ξ 0.5 μ ξ 0.224 1
μ

  
      

   

where ξab_p_el is the “elastic” damping that can be taken as approximately equal to 2%. Note that 
the ξab_p is obtained from an elastic-perfectly-plastic hysteresis rule, corrected by the 0.5 factor to 
account for the fact that during a full cycle the abutment passive resistance will dissipate energy 
in the first and third quadrant. 

14. For the abutments’ frictional seismic resisting mechanism, compute the displacement ductility 
demand (μΔ), the resisting lateral force (Fab_f), and the equivalent viscous damping (ξab_f): 

If μΔ < 1 

Otherwise 

Δ sys yμ Δ Δ

ab _f ab _fc sys yF F Δ Δ 

ab _f ab _f _elξ ξ

ab _f ab _fcF F

0.127
ab _f Δ ab _f _el 0.336

Δ

1ξ μ ξ 0.224 1
μ

 
     

 

where ξab_f_el is the elastic damping that can be taken as 2%. 

113  



 

  

 
   

 

 

   

 

    

 

          
    

  
           

 
    

            
 

 

     

 

Table 6.2 (Continued) 

Integration to the bridge-level 
15. Calculate the secant stiffness (Ksys) and period (Tsys) of the bridge: 

ab _ p ab _f b
i 1, n i 2...n 1

sys
sys

F F F
K

Δ
  

 



 

s
i 1...n

sys
sys

W g
T 2π

K



16. Calculate the equivalent viscous damping ratio of the bridge (ξsys): 

ab _ p ab _ p ab _f ab _f b b
i 1, n i 2...n 1

sys
ab _ p ab _f b

i 1, n i 2...n 1

F ξ F ξ F ξ
ξ

F F F
  

  

    


 

 

 

17. Compute the new lateral displacement of the bridge (Δsys): 

 
α

sys sys
sys

0.07Δ Sd T ,0.05
0.02 ξ
 

  
  

. 

where α = 0.5 for a site at which the elastic design spectrum (Sd) is dominated by broadband 
motions, or α = 0.25 for the case of near-fault pulse-like motions. 

18. Check for convergence: 
a. If new Δsys is no more than 2% different from the input displacement used in step 9 end 

iterations. 
b. Else use Δsys as input value and repeat steps 9 to 18. 

19. Estimate at each bent the column hinges’ plastic rotation (θc_pl) and check if P-Δ instability ratio 
(θP-Δ) exceeds the allowable limit: 

          , and 
 

s sys cN _t fc
P Δ

b c f fc cN _t

W Δ 0.2 M 0.3 M
θ

F H H M M

   
 

 

where < > set negative values to zero, i.e., <x> = x if x ≥ 0, otherwise <x> = 0. 
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7 System Level Design and Validation based on Two 

Bridges Case Studies 

Two existing bridges of Caltrans are hypothetically re-designed, for a site in San Bernardino, 

California of very high seismic hazard (1.6 ft/s slope of the design displacement spectrum up to a 

period of 5 seconds), using columns with rocking shallow foundations at the base and moment 

resistant connections between the columns and the deck. The designs aim at limited post-

earthquake structural damage and residual deformations and thus to prompt post-earthquake 

functionality. Three-dimensional nonlinear response history analyses (NRHA) of the two bridges 

using a suite of 14 ground motions are performed to validate the design concepts as well as the 

displacement-based analysis method of Chapter 6. 

7.1 DESCRIPTION OF SELECTED REAL BRIDGES 

The first bridge, referred to herein as Mono Way Bridge, is shown in plan, elevation and typical 

section view in Figure 7.1. It has four spans of similar length and a total length of 744 ft. The 

weight of the superstructure is 13,444 kip, while the weight of the columns is 4,634 kip. 

Horizontal curvature of the bridge and abutment skewness is small. The pre-stressed box girder 

deck has a width of 46.83 ft, and depth of 8.75 ft. It is supported on three single-column bents of 

increasing column height varying from 75.1 ft near the left abutment to 110.2 ft near the right 

abutment. The columns are octagonal in shape with dimensions of 8 ft and 12 ft in the 

longitudinal and transverse directions, respectively; their longitudinal reinforcement ratio is 1%. 

The concrete has nominal unconfined compressive strength of 3.6 ksi, while the reinforcing steel 

has nominal yield strength of 60 ksi. The bridge is supported on shallow foundations with plan 

dimensions of 25 ft and 30 ft in the longitudinal and transverse directions, respectively. Tie down 
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anchors near the edges of the footings are used to prevent uplift. The abutments of the bridge are 

seat-type abutments with 2.5 in. expansion joints and three spherical PTFE bearings placed 

between the soffit of the deck and the abutment stem. Two exterior sacrificial shear keys are 

placed at each abutment. Hence, the capacity of the Mono Way Bridge abutments is relatively 

small in the longitudinal and the transverse directions. 

The second bridge, referred to herein as Murray Ridge Bridge, is shown in plan, elevation 

and typical section view in Figure 7.2. It has four spans of different length and a total length of 

350 ft. The weight of the superstructure is 10,673 kip, while the mass of the columns is 2,110 

kip. In-plan curvature of the bridge is small while the abutments and bents are 16.9 degrees 

askew. The post-tensioned box girder deck has a width of 80 ft, depth of 6 ft and 10 girders in 

total. It is supported on three “Y-shaped” columns of clear height varying from 46.9 ft to 60.7 ft. 

The base section of the columns is rectangular with dimensions of 6 ft and 18 ft in the local 

longitudinal and transverse direction, respectively, and has a longitudinal reinforcement ratio of 

0.7%. The concrete has nominal unconfined compressive strength of 1.2 ksi, while the 

reinforcing steel has nominal yield strength of 20 ksi. The bridge is supported on shallow 

foundations with plan dimensions of 16 ft and 34 ft in the local longitudinal and transverse 

directions, respectively. Integral diaphragm-type abutments are used at the ends of the bridge 

with a height of 12 ft at the middle of the deck and 7% out-of-plane slope. The abutments’ 

diaphragms are simply supported on shallow spread footings with a continuous shear key along 

the local transverse direction. Hence, Murray Ridge Bridge has relatively strong abutments, 

particularly in the longitudinal direction. It is also noted that the bridge has been retrofitted by 

means of column casing and footings enlargement. 
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Figure 7.1 Plan, elevation and typical section view of the Mono Way Bridge [Caltran’s drawings]. 
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Figure 7.2 Plan, elevation and typical section view of the Murray Ridge Bridge [Caltran’s drawings]. 



 

 

    

    

          

    

        

      

      

     

      

        

 

          

 

     

       

  

    

         

       

    

     

 

  

 

7.2 SEISMIC HAZARD DESCRIPTION 

The two considered bridges have been hypothetically redesigned with rocking shallow 

foundations at the base of the columns for a site located at a latitude of 34.2367 and longitude of 

117.425, approximately 1.5 km from the San Andreas Fault, North-West of San Bernardino, CA, 

with Vs30 = 400 m/s. The 5% damped displacement spectrum for the design earthquake (DE) that 

has a 5% probability of exceedance in 50 years is shown in Figure 7.3. Figure 7.3 also shows that 

the hypothetical redesign DE spectrum is much stronger (by a factor of 5 to 9) than the DE 

spectra used for the design of the real conventionally designed bridges. The actual DE 

displacement spectrum for the Mono Way Bridge was obtained from the bridge drawings and 

that for the Murray Ridge Bridge site was obtained from Caltrans online ARS tool [Caltrans 

2013b]. 

A set of 14 ground motions were used for the Nonlinear Response History Analysis 

(NRHA) of the two redesigned bridges. For each of the motions, both the fault-normal (FN) and 

fault-parallel (FP) horizontal components were used in the NRHA. The motions were scaled in 

amplitude such that the mean linear spectra of the fault-normal components at 5% damping 

match the target DE spectrum. Table 7.1 summarizes the set of the 14 ground motions used, 

along with the amplitude scale factor used to match the DE target spectrum. It is noted that out of 

the 14 ground motions, 3 motions are included in the broadband set used in Chapter 4, while 10 

motions are included in the corresponding near-fault pulse-like set. Figure 7.4 plots the linear 

acceleration and displacement spectra of the fault-normal and fault parallel components of the 14 

motions, scaled to the DE target spectrum. Figure 7.5 compares the mean linear acceleration and 

displacement spectra of the fault-normal and fault-parallel components of the 14 ground motions, 

scaled to the DE seismic hazard level, to the target DE spectrum. 
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Figure 7.3 Linear displacement spectrum (ξ = 5%) used in the present study at the DE seismic hazard level, and corresponding DE spectra of 
the Mono Way Bridge (Caltrans’ drawings) and of the Murray Ridge Bridge site (Caltrans online ARS tool). 

Table 7.1 Set of ground motions used in the numerical analyses of the two bridges. 
Rrup Motion Scale Factor No. Earthquake Location Year Mw Station Name (km) Characterization to DE Level 

1 Loma Prieta, CA 1989 6.9 LGPC 3.9 Pulse-like 2.58 
2 Northridge, CA 1994 6.7 Jensen Filter Plant. 5.4 Broadband 3.00 
3 Coalinga, CA 1983 6.4 Pleasant Valley P.P. – Yard 8.4 Pulse-like 3.00 
4 San Fernando, CA 1971 6.6 Pacoima Dam 1.8 Pulse-like 1.60 
5 Chi-Chi, Taiwan 1999 7.6 TCU068 0.3 Pulse-like 1.22 
6 Cape Mendocino, CA 1992 7.0 Cape Mendocino 7.0 Pulse-like 2.54 
7 Duzce, Turkey 1999 7.1 Duzce 6.6 Pulse-like 0.80 
8 Tabas, Iran 1978 7.4 Tabas 2.1 Pulse-like 0.80 
9 Christchurch, NZ 2011 6.3 PRPC 2.5 Pulse-like 3.00 

10 Chi-Chi, Taiwan 1999 7.6 TCU074 13.5 -- 2.92 
11 Chi-Chi, Taiwan 1999 7.6 TCU102 1.5 Pulse-like 3.00 
12 Landers, CA 1992 7.3 Lucerne 2.2 Pulse-like 2.23 
13 Kocaeli, Turkey 1999 7.5 Yarimca 4.8 Broadband 2.72 
14 Imperial Valley, CA 1979 6.5 El Centro Array #4 7.1 Broadband 2.40 



 

 

 
         

       
   

 

 
       

        
  

 

Figure 7.4 Linear acceleration and displacement spectra for 5% damping for the (a, c) fault-normal 
and (b, d) fault-parallel components of the 14 ground motions, with the fault-normal 
components scaled at the DE target spectrum. 

Figure 7.5 (a) Linear acceleration and (b) displacement spectra for the DE seismic hazard level, 
compared to the mean spectra at 5% damping ratio of the fault-normal and fault-parallel 
components of the 14 ground motions scaled to the DE hazard level. 
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7.3 DISPLACEMENT-BASED SEISMIC DESIGN 

7.3.1 Design Objectives 

The design objectives for the two re-designed bridges, with columns on rocking shallow 

foundations and moment-resistant connections with the deck, at the design level earthquake (DE) 

with 5% probability of exceedance in 50 years, were aiming at prompt post-earthquake 

functionality of the bridge and limited structural and foundation damage as well as limited 

residual displacements. More specifically, they were as follows: 

(1) The peak drift ratio demand for the mean DE ground motion was required to be less than 

6% to avoid damage due to kinematics. 

(2) The residual drift ratio for the mean DE ground motion was required to be less than 1%. 

(3) The tensile strain in the columns for the mean DE ground motion was required to be less 

than 3% on the assumption that such strains would facilitate repair of the plastic hinge 

regions of the columns after a DE event. 

(4) Elastic response of the post-tensioned strands of the deck. 

For systems responding with plastic hinging, Caltrans currently limits the allowable P-Δ 

moment to 20% of the idealized plastic moment capacity of the hinge [Caltrans 2013a]. In 

recognition of the improved overturning stability of rocking foundations [Deng et al. 2012b], the 

allowable instability ratio is increased to 0.3 in the transverse direction (see Chapter 4), while a 

weighted average between 0.2 and 0.3 is used in the longitudinal direction depending on the 

relative contribution of the plastic hinge at the top of the column and of the rocking foundation to 

the strength of the considered bent (see Chapter 5). 

7.3.2 Redesign of Bridges with Rocking Shallow Foundations 

Design assumptions 

The two bridges are redesigned with rocking shallow foundations for the DE seismic hazard 

level considering the following two scenarios: (i) the FN component is applied in the transverse 

direction; and (ii) the FN component is applied in the longitudinal direction. In each of these two 

cases, the effect of biaxial loading due to the fault-parallel components is neglected. 
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As noted in Chapters 2 and 4 – 6, the design linear displacement spectrum at 5% damping 

would be adjusted at different damping levels through the displacement reduction factor, RD, 

with different values of the power α depending on the characteristics of the ground motions 

expected to dominate the design spectrum. Despite that, the displacement-based analysis of the 

bridges in the present study is conducted by re-computing the mean linear displacement 

spectrum of the 14 fault-normal ground motions at different damping ratio values. This approach 

is followed for the following reasons: (i) it ensures a consistent comparison between the 

predicted and numerically computed displacement demands; (ii) the set of 14 motions used in the 

present study is a mix of pulse-like and broadband motions; (iii) it was found that a single value 

of the power α could not adequately represent the mean linear displacement spectrum of the 

selected 14 fault-normal motions across the whole range of periods of interest; and (iv) 

evaluation of the appropriate displacement reduction factor due to increased damping (RD) is not 

within the scope of this study. 

Lastly, two expressions have been discussed in Chapter 4 for the equivalent viscous 

damping of a rocking shallow foundation. The first expression is the Deng et al. [2014] area-

based hysteretic damping equation multiplied by the 0.45 area-based correction factor of Eqn. 

(4.1). The second expression, Eqn. (4.4), is purely based on the BNWF models and yields 33% 

smaller damping compared to the first expression, consistent with findings from Chapter 3. 

Among the two, the first one is the main expression proposed to be used in design, while the 

second one may be used as a conservative lower bound estimate of equivalent viscous damping 

in cases with explicit prevention of sand falling mechanism. Nevertheless, Eqn. (4.4) is 

representative of the expected damping in the numerical model of the bridges. Thus, Eqn. (4.4) 

has also been used in the displacement-based analysis of the bridges to ensure consistent 

comparison with the NRHA results. 

Material properties 

The redesign of the two bridges with rocking shallow foundations is based on the following 

properties for the soil, concrete, and reinforcing steel. The foundation soil for both bridges is 

assumed to be a clean dry sand with constant volume friction angle φcv = 30o, minimum and 

maximum void ratios emin = 0.478 and emax = 0.818, respectively, relative density DR = 90%, dry 

unit weight γd = 110 pcf and Poisson’s ratio ν = 0.33. The concrete for the Mono Way Bridge and 

123  



 

 

     

      

       

 

     

      

   

    

 

    

    

          

        

    

      

      

       

   

      

       

       

   

       

  

        

    

     

    

    

 

the Murray Ridge Bridge (in parenthesis) has an expected unconfined compressive strength fceꞌ = 

6 (5.2) ksi and an expected confined compressive strength fccꞌ = 8 (7.2) ksi. For both bridges, the 

reinforcing steel has been considered to have an expected yield strength fye = 68 ksi and 1% 

hardening ratio. 

Design for excitation in the transverse direction 

Table 7.2 summarizes the geometry and sizing of the redesigned bridges: the footing dimension 

in the local transverse (Bf) and longitudinal direction (Lf), the footing height (Hf) and embedment 

(Df), the column base dimension in the transverse (Bcl) and longitudinal direction (Lcl), the 

longitudinal reinforcement ratio (ρl) and the clear column height (Hc). It also shows the 

corresponding values of the built bridges if different from the redesigned. Note that apart from 

changes to the footing and column sizing for the redesigned bridges, square footings and circular 

columns have been used in the Mono Way Bridge, while the column height of bent 2 for the 

Murray Ridge Bridge has been increased by 6 ft. These changes were dictated by the more than 

five times greater seismic hazard used here compared with that of the as-built bridges. 

Table 7.3 provides a summary of key design characteristics of the redesigned bridges for 

response in the transverse direction. The critical contact area ratio (ρac) for all rocking 

foundations in the transverse direction is less than 0.125 to ensure limited soil inelasticity due to 

rocking. The acceleration coefficient at the deck centroid that would mobilize the footings’ 

moment capacity (CN) is in the 0.2 – 0.3 range for all bents at both bridges. The corresponding 

CN at the bridge level has a peak value of 0.26 and 0.57 for the Mono Way Bridge and Murray 

Ridge Bridge, respectively, while CN drops to a residual value of 0.2 and 0.42 for large drifts that 

exceed the displacement capacity of the exterior shear keys of the Mono Way Bridge and of the 

wing walls for the Murray Ridge Bridge, respectively. The percentage contribution of the sliding 

resisting mechanisms at the abutments to the overall residual lateral strength of the bridge 

(assumes complete damage of the shear keys and wing walls) is 9.8% and 24.2% for the Mono 

Way and Murray Ridge bridges, respectively. This parameter is of particular importance for the 

prediction of drift demand in the transverse direction, as it is associated with a high energy 

dissipation that is neglected in the procedure outlined in Table 6.1. The normalized moment-to-

shear ratio of the foundations [Mfc/(Fc×Bf)] is larger than 1, indicating a rocking dominated 

response and small sliding. Nominally elastic response at the base of the columns is also satisfied 

124  



 

 

  

           

  

       

   

 

         

  

    

    

         

        

      

   

     

      

         

    

 

as the yield moment of the columns in the transverse direction exceeds the foundation moment 

capacity by approximately 25% for the Mono Way Bridge and 130% for the Murray Ridge 

Bridge. Lastly, the end column of Table 7.3 provides the abutment strength correction (Ca), as 

determined by Eqn. (6.1). For each bridge two values are provided; the lower bound value 

neglects strength contribution from resisting mechanisms with small to moderate ductility (i.e. 

shear keys or wing walls), while the upper bound value includes such mechanisms. For the Mono 

Way Bridge Ca is found to be between 0.89 and 1.15, while for the Murray Ridge Bridge Ca = 

1.23 – 1.60. 

Table 7.4 summarizes the displacement-based analysis results of the redesigned bridges 

in the transverse direction, based on the procedure outlined in Table 6.1, for a mass participation 

factor Cm = 0.7. The predicted transverse drift ratio demand of the Mono Way Bridge is between 

5.8% and 7.4%, while for the Murray Ridge Bridge it is between 6.2% and 7.3%. A maximum 

instability ratio θP-Δ = 0.32 is predicted at bent 2 of Murray Ridge Bridge. This value is close 

enough to the suggested limit value of 0.3 and it is considered acceptable. It is also worth noting 

the small equivalent viscous damping ratio of the bents (ξsys) having an average value of 5% for 

the Mono Way Bridge where the critical contact area ratio (ρac) is in the order of 0.05, and a 

value of 6.5% for the Murray Ridge Bridge where ρac ≈ 0.1. These values are substantially 

smaller than the 15 – 25% damping expected for abutments that deform by frictional sliding. 
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Table 7.2 Geometry/sizing and column longitudinal reinforcement ratio of the two bridges. 

Bridge Bent Bf (ft) Lf (ft) Hf (ft) Df (ft) Bcl (ft) Lcl (ft) ρl (%) Hc (ft) 

Mono 
Way 

2 
3 
4 

33 (30) * 

33 (30) 
33 (30) 

33 (25) 
33 (25) 
33 (25) 

6 
6 
6 

13.4 
13.4 
19.4 

12 dia. (12×8) 
12 dia. (12×8) 
12 dia. (12×8) 

2.5 (1.5) 
2.5 (1.5) 
2.5 (1.5) 

75.3 
93.3 

110.0 
2 25 (34) 14 (16) 3.5 12.9 (6.9) 18 5 1.8 (0.7) 52.9 (46.9) 

Murray 
Ridge 3 25 (34) 14 (16) 3.5 12.8 18 5 1.8 (0.7) 60.7 

4 25 (34) 14 (16) 3.5 16.9 18 5 1.8 (0.7) 56.2 
* In parenthesis values are the as-built values of the two bridges if different from the redesigned. 

Table 7.3 Design summary for excitation in the transverse direction. 
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Bridge Location H (ft) 
Wd 

(kip) 
Wc 

(kip) 
Ws 

(kip) 
Wc_b 
(kip) 

Wf_b 
(kip) ρac 

Mfc 
(kip-ft) Fc (kip) 

Fc / Fc_bridge 
(%) CN 

1 
Mfc / 

(Fc·Bf) 
Mcy_b 
/ Mfc Ca 

Mono 
Way A1 -- 1500 -- 1500 -- -- -- -- 1502 (6003) 4.92 (15.13) 0.12 (0.43) -- --

0.892 

(1.153) 

B2 86.7 3454 1303 3888 4757 5281 0.041 88670 1023 33.42 (25.83) 0.26 2.6 1.29 

B3 104.7 3831 1615 4369 5446 5940 0.046 98670 943 30.83 (23.84) 0.22 3.2 1.22 

B4 122.0 3274 1914 3912 5188 5586 0.033 97570 800 26.12 (20.23) 0.20 3.7 1.22 

A5 -- 1500 -- 1500 -- -- -- -- 1502 (6003) 4.92 (15.13) 0.12 (0.43) -- --

Bridge -- 13559 4832 15170 -- -- -- -- 30662 (39663) -- 0.22 (0.263) -- --
Murray 
Ridge A1 -- 957 -- 957 -- -- -- -- 4794 (10075) 9.44 (14.75) 0.54 (1.055) -- --

1.234 

(1.605) 

B2 59.7 2159 681 2386 2840 3291 0.080 38680 648 12.74 (9.55) 0.27 2.4 2.67 

B3 67.4 3299 784 3560 4083 4530 0.113 51070 758 14.93 (11.14) 0.21 2.7 2.25 

B4 62.9 3327 725 3569 4052 4618 0.093 53500 850 16.74 (12.45) 0.24 2.5 2.06 

A5 -- 1501 -- 1501 -- -- -- -- 7514 (12795) 14.84 (18.75) 0.54 (0.855) -- --

Bridge -- 11243 2190 11973 -- -- -- -- 50814 (68575) -- 0.424 (0.575) -- --
1Defined as the lateral force capacity (Fc) normalized by the corresponding seismic weight (Ws); 2Due to PTFE bearings (μ = 0.1); 3Due to PTFE bearings and one 
exterior shear key; 4Due to diaphragm-spread footing sliding (μ = 0.5); 5Due to diaphragm-spread footing sliding and the two wing walls. 



 

 

         
    

 

     

      

       
        
       
        

        
        
        
        

          
        

        
        

        
       

        
          
        
        
        
        

        
       

       

   
 

 

 

 

 

 

 

 

 

Table 7.4 Summary of the displacement-based analysis for excitation in the transverse direction for Cm 
= 0.7, and Ca the upper-bound value of Table 7.3. 

Parameter1 

Mono Way Bridge 
Bent 

2 
Bent 

3 
Bent 

4 

Murray Ridge Bridge 
Bent 

2 
Bent 

3 Bent 4 

H (ft) 86.7 104.7 122.0 59.7 67.4 62.9 
Ws (kip) 3888 4369 3912 2386 3560 3569 
ρac 0.041 0.046 0.033 0.080 0.113 0.093 
Mfc (kip-ft) 88670 98670 97570 38680 51070 53500 
Fc (kip) 1023 943 800 648 758 850 
Kc (kip/in) 318 175 111 1181 754 966 
Δc (in) 3.2 5.4 7.2 0.5 1.0 0.9 
Tc (s) 0.82 1.17 1.36 0.28 0.43 0.39 
Kf_50 (kip-ft/rad × 103) 26601 29601 29271 11604 15321 16050 
Tf_50 (s) 0.85 1.03 1.12 0.59 0.71 0.65 
Δy1 (in) 3.3 4.8 6.0 1.5 1.9 1.7 
Δy2 (in) 15.7 20.5 24.8 9.1 10.7 9.9 
Δsys_input (in) 76.1 81.5 84.3 43.4 57.8 53.3 
F (kip) 1023 942 800 648 758 851 
df (rad) 0.070 0.061 0.053 0.060 0.070 0.069 
Kf_pl (kip-ft/rad × 103) 1328 1722 1976 684 762 809 
Tf_pl (s) 3.82 4.27 4.30 2.41 3.19 2.90 
ξf_pl (%) 5.4 5.4 4.8 6.3 7.2 6.7 
Tsys (s) 4.00 4.55 4.64 2.50 3.30 3.00 
ξsys (%) 5.1 5.0 4.5 6.0 6.9 6.5 
Δsys_output (in) 76.7 82.4 84.7 44.1 58.8 54.1 
Θ (%) 
θP-Δ 

7.4 6.6 5.8 
0.25 0.27 0.24 

6.2 7.3 7.2 
0.21 0.32 0.28 

1Symbols defined in Table 6.1. 
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Design for excitation in the longitudinal direction 

Table 7.5 provides the design summary of the redesigned bridges for response in the longitudinal 

direction. The acceleration coefficient at the deck centroid that would mobilize the longitudinal 

force capacity of the bridges (CN) is 0.64 for the Mono Way Bridge and 1.18 for the Murray 

Ridge Bridge. The abutment passive, abutment sliding and bents’ foundation rocking and column 

top plastic hinging contributions to the total strength of the Mono Way Bridge are 16%, 3% and 

81%, respectively; hence, most of the longitudinal strength of the bridge is provided from the 

bents. For the Mono Way Bridge, the corresponding contributions are 65%, 9% and 26%; thus, it 

is the abutment passive resistance that contributes the most to the longitudinal strength of the 

bridge. 

The critical contact area ratio (ρac) for all rocking foundations in the longitudinal 

direction is less than 0.125. The normalized moment-to-shear ratio of the foundations [Mfc/(Fc×Lf)] 

is roughly larger than 1, indicating a rocking dominated response and small sliding. Nominally 

elastic response at the base of the columns is also satisfied, as the yield moment of the columns’ 

base in the longitudinal direction exceeds the corresponding foundation moment capacity by 

approximately 25% for the Mono Way Bridge and 30% for the Murray Ridge Bridge. Lastly, the 

ratio between the nominal moment capacity at the top of the columns and the foundation moment 

capacity is in the 1.6 – 1.8 range for the Mono Way Bridge, and in the 1.5 – 2 range for the 

Murray Ridge Bridge. 

Tables 7.6 and 7.7 summarize the displacement-based analysis of the Mono Way Bridge 

and the Murray Ridge Bridge, respectively, in the longitudinal direction, based on the procedure 

outlined in Table 6.2 for Cm = 1. 

The predicted longitudinal drift ratio demand at the bents of the Mono Way Bridge [and 

the Murray Ridge Bridge] is between 2.4% [2.3%] and 3.5% [2.7%], while the plastic rotation at 

the top of the columns is in the 1.4 – 2.7% [1 – 1.4%] range satisfying the relevant design 

objective. Also, for both bridges the predicted instability ratio (θP-Δ) is within the allowable 

limits. For the Mono Way Bridge, the ξeq at the bents due to foundation rocking and due to 

column plastic hinging is approximately 4% and 14%, respectively, resulting in a bent-level ξeq 

in the order of 10%. At the abutments, ξeq is 7.5% due to the backfill passive resistance and 23.4% 

due to sliding at the PTFE bearings. Integration at the bridge level results to a ξeq of 10.6%. For 

the Murray Ridge Bridge similar observations can be made. 
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Table 7.5 Design summary for excitation in the longitudinal direction. 

129 

Bridge 
Resisting 

Mechanism Location H (ft) 
Wd 

(kip) 
Wc 

(kip) 
Ws 

(kip) 
Wc_b 
(kip) 

Wf_b 
(kip) ρac 

Mfc 
(kip-ft) 

McN_t 
(kip-ft) 

Fc 
(kip) 

Fc/Fc_bridge 
(%) CN 

1 
Mfc / 

(Fc·Lf) 
Mcy_b 
/ Mfc 

McN_t 
/ Mfc 

Mono 
Way 

Abut. Passive A1 & A5 (ave.) -- -- -- -- -- -- -- -- -- 1543 15.9 0.10 -- -- --

Abut. Sliding A1 -- 1500 -- 1500 -- -- -- -- -- 150 1.5 0.01 -- -- --

A5 -- 1500 -- 1500 -- -- -- -- -- 150 1.5 0.01 -- -- --
Foundation 
Rocking & 
Column Top 
Plastic 
Hinging 

B2 81.3 3454 1303 3888 4757 5281 0.047 88181 158853 3040 31.4 0.20 0.9 1.3 1.8 

B3 99.3 3831 1615 4369 5446 5940 0.050 98238 160253 2604 26.9 0.17 1.1 1.2 1.6 

B4 116.6 3274 1914 3912 5188 5586 0.035 97345 158180 2192 22.6 0.14 1.3 1.2 1.6 

Bridge -- -- 13559 4832 15170 -- -- -- -- -- 9680 -- 0.64 -- -- --

Murray 
Ridge 

Abut. Passive A1 & A5 (ave.) -- -- -- -- -- -- -- -- -- 9254 65.4 0.77 -- -- --

Abut. Sliding A1 -- 957 -- 957 -- -- -- -- -- 479 3.4 0.04 -- -- --

A5 -- 1501 -- 1501 -- -- -- -- -- 751 5.3 0.06 -- -- --
Foundation 
Rocking & 
Column Top 
Plastic 
Hinging 

B2 56.4 2159 681 2386 2840 3291 0.086 22550 45321 1203 8.5 0.10 1.3 1.5 2.0 

B3 64.1 3299 784 3560 4083 4530 0.115 29530 45802 1174 8.3 0.10 1.8 1.2 1.6 

B4 59.7 3327 725 3569 4052 4618 0.098 31220 45731 1289 9.1 0.11 1.7 1.2 1.5 

Bridge -- -- 11243 2190 11973 -- -- -- -- -- 14150 -- 1.18 -- -- --

1Defined as the lateral force capacity (Fc) normalized by the total bridge seismic weight (Ws). 



 

       
      

          

            
       

       
        

        
        
        
        

          

        
        
        

        
        

        
        

   
        

        
        
        
        

        
        
        
        
        

          
   
   
   
   

   
       

        
       

       
          

    

 
          

 

 

Table 7.6 Summary of the displacement-based analysis for excitation in the longitudinal direction of the 
Mono Way Bridge for Cm = 1. 
Resisting Mechanism 

Parameter1 | Location 

Abut. Passive 
A1 & A5 (ave.) 

Abut. Sliding Rocking & Plastic Hinging 
A1 A5 B2 B3 B4 

H (ft) 
ρac 

Mfc (kip-ft) 
McN_t (kip-ft) 
H1 (ft) 
H2 (ft) 
LSP (ft) 

φcy_t (rad/in × 10 -5 ) 
Δc1 (in) 
Δy1 (in) 
Δy2 (in) 
Δy (in) 
Fc (kip) 
Tf_50 (s) 
Tc1 (s) 

--
--
--
--
--
--
--

--

--
--
--

3.22 

1543 
--
--

-- -- 81.3 99.3 116.6 
-- -- 0.047 0.050 0.035 
-- -- 88181 98238 97345 
-- -- 158853 160253 158180 
-- -- 29.0 37.8 44.3 
-- -- 52.2 61.6 72.0 
-- -- 1.2 1.2 1.2 

-- -- 3.6 3.6 3.6 

-- -- 0.4 0.9 1.3 
-- -- 4.6 6.3 7.7 
-- -- 4.9 6.8 9.2 

0.1 0.1 9.5 13.1 17.0 
150 150 3040 2604 2192 
-- -- 0.77 0.95 1.12 
-- -- 0.45 0.73 0.98 

Δsys_input (in) 34.1 
F (kip) 
Δss2 (in) 
μΔ or μΔ2 

ξss2 (%) 
Δss1 (in) 
df (rad) 
Tf_pl (s) 
ξf_pl (%) 
Tss1 (s) 
ξss1 (%) 
ξb or ξab_p or ξab_f (%) 

1543 
--

10.5 
--
--
--
--
--
--
--

7.5 

150 150 3040 2604 2192 
-- -- 21.9 21.1 21.1 

341 341 4.4 3.1 2.3 
-- -- 16.0 14.6 12.9 
-- -- 12.2 13.0 13.0 
-- -- 0.034 0.027 0.022 
-- -- 2.33 2.51 2.64 
-- -- 4.6 4.3 3.4 
-- -- 2.49 2.78 3.03 
-- -- 4.4 4.0 3.2 

23.4 23.4 11.8 10.5 9.2 
Ws (kip) 15170 
Ksys (kip/in) 284 
Tsys (s) 2.34 
ξsys (%) 10.6 
Δsys_output (in) 34.3 
Θ (%) -- -- -- 3.5 2.9 2.4 
θc_pl (%) -- -- -- 2.7 1.9 1.4 
θP-Δ 

3 -- -- -- 0.05 0.05 0.04 
θP-Δ_limit -- -- -- 0.24 0.24 0.24 
1Symbols defined in Table 6.2; 2Includes 2.5 in expansion joint; 3Defined with respect to the 
tributary seismic weight (Ws) of each bent. 
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Table 7.7 Summary of the displacement-based analysis for excitation in the longitudinal direction of the 
Murray Ridge Bridge for Cm = 1. 

Resisting Mechanism 

Parameter1 | Location 

Abut. Passive 
A1 & A5 (ave.) 

Abut. Sliding 
A1 A5 

Rocking & Plastic Hinging 
B2 B3 B4 

H (ft) -- -- -- 56.4 64.1 59.7 
ρac -- -- -- 0.086 0.115 0.098 
Mfc (kip-ft) -- -- -- 22550 29530 31220 
McN_t (kip-ft) -- -- -- 45321 45802 45731 
H1 (ft) -- -- -- 18.8 25.1 24.2 
H2 (ft) -- -- -- 37.7 39.0 35.5 
LSP (ft) -- -- -- 1.2 1.2 1.2 

φcy_t (rad/in × 10 -5 ) -- -- -- 8.1 8.1 8.1 

Δc1 (in) -- -- -- 0.4 1.0 1.0 
Δy1 (in) -- -- -- 3.1 4.6 4.5 
Δy2 (in) -- -- -- 5.8 6.2 5.2 
Δy (in) 1.1 0.1 0.1 8.9 10.9 9.7 
Fc (kip) 9254 479 751 1203 1174 1289 
Tf_50 (s) -- -- -- 0.87 1.02 0.96 
Tc1 (s) -- -- -- 0.61 1.02 0.96 
Δsys_input (in) 18.0 
F (kip) 9254 479 751 1203 1174 1289 
Δss2 (in) -- -- -- 12.0 10.9 10.7 
μΔ or μΔ2 16.4 180 180 2.1 1.8 2.1 
ξss2 (%) -- -- -- 12.3 11.1 12.3 
Δss1 (in) -- -- -- 6.0 7.1 7.3 
df (rad) -- -- -- 0.025 0.020 0.022 
Tf_pl (s) -- -- -- 2.23 2.29 2.26 
ξf_pl (%) -- -- -- 5.1 5.2 5.1 
Tss1 (s) -- -- -- 2.47 2.71 2.63 
ξss1 (%) -- -- -- 4.6 4.4 4.4 
ξb or ξab_p or ξab_f (%) 8.2 22.4 22.4 9.7 8.5 9.1 
Ws (kip) 11973 
Ksys (kip/in) 786 
Tsys (s) 1.24 
ξsys (%) 9.7 
Δsys_output (in) 18.8 
Θ (%) -- -- -- 2.7 2.3 2.5 
θc_pl (%) -- -- -- 1.4 1.0 1.3 
θP-Δ 

2 -- -- -- 0.06 0.07 0.07 
θP-Δ_limit -- -- -- 0.23 0.24 0.24 
1Symbols defined in Table 6.2; 2Defined with respect to the tributary seismic weight (Ws) of each 
bent. 
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7.4 NUMERICAL MODELS 

The analyses were conducted using the Open System for Earthquake Engineering Simulation 

(OpenSees) [Mazzoni et al. 2014] computer software using numerical models similar to the ones 

described by Antonellis and Panagiotou [2013]. Figures 7.6 and 7.7 describe the numerical 

models for the Mono Way Bridge and the Murray Ridge Bridge, respectively. 

Fiber-section nonlinear Euler Bernoulli beam-column (frame) elements were used to 

model the columns and the deck with 5 integration points per element. The Concrete03 and 

Steel02, material models, were used to model the concrete and steel, respectively. A zero-length 

fiber-section, with concrete and steel tangent modulus properties reduced by 14 times, compared 

to these used in the column elements, was used between the columns’ top and the superstructure 

to model strain penetration into the superstructure. Post-tensioning of the deck was modeled 

using an initial strain elastic material (InitStrainMaterial). Linear elastic stiff elements were used 

to connect the top of the columns with the centroid of the deck for the Mono Way Bridge and to 

model the column-to-bent cap joints for the Murray Ridge Bridge. Linear elastic elements were 

used to model the bent caps in the transverse direction. Linear elastic stiff elements were also 

used to: (i) connect the bottom of the column with the foundation centroid and the bottom of the 

foundation; and (ii) to model the abutment caps (Mono Way Bridge) and the abutment 

diaphragms (Murray Ridge Bridge). 

The soil underneath each shallow foundation was modeled using 289 zero length springs 

distributed in a non-uniform 17 × 17 grid. The vertical force-displacement relation was modeled 

using the QzSimple1 F-Δ relation. The initial stiffness, capacity and distribution of the vertical 

springs are based on Chapter 3. Horizontal springs at the periphery of the footings were used to 

model the base friction (TzSimple1) and passive reaction of the surrounding soil (PySimple1), 

similarly with Antonellis and Panagiotou [2013]. The foundation nodes connected with the 

passive soil springs were placed at a height above the footing base, based on the centroid of the 

expected passive earth pressure distribution, and were connected to the nodes at the footing base 

with vertical linear elastic stiff elements. The total frictional capacity of the footings was 

assumed to be 60% of the total axial load at the base of the footings. 

The bearings at the abutments of the Mono Way Bridge were modeled with zero-length 

spring elements, with an elastic-perfectly-plastic force-displacement behavior in the two 

horizontal directions, while in the vertical direction the bearings were modeled to have zero 
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tensile strength and a linear elastic stiff behavior in compression. The abutment diaphragm – 

spread footing sliding behavior for the Murray Ridge Bridge was modeled with a series of Flat 

Slider Bearing Elements that couple the sliding resistance in any horizontal direction with the 

axial compression force and have zero tensile strength. The abutment backfill soil was modeled 

according to Caltrans Seismic Design Criteria [2013a] using a series of zero-length springs with 

zero tensile strength and an elastic-perfectly plastic behavior in compression (ElasticPPGap). An 

initial gap was used only for the Mono Way Bridge to model the expansion joint. The shear keys 

of the Mono Way Bridge were modeled using zero-length spring elements with the tri-linear 

force-displacement relationship of Aviram et al. [2008]. The wing walls’ response of the Murray 

Ridge Bridge was approximately modeled with zero-length spring elements with pinching and 

deteriorating force-displacement behavior using the Hysteretic uniaxial material in OpenSees. 

The mass was assigned at the centroid of the abutments, the deck nodes, the column 

nodes and at the centroid of the foundations. The corresponding mass moments of inertia at each 

of these locations were also assigned. The gravity load was assigned as point loads in the above 

locations. A tangent stiffness Rayleigh damping of 2% was used at the frequencies of modes 1 

and 10, determined by an elastic modal analysis after application of gravity loads (i.e. initial 

bridge stiffness). The corresponding frequencies were 0.5 Hz and 1.6 Hz for the Mono Way 

Bridge, and 2.0 Hz and 6.5 Hz for the Murray Ridge Bridge. 
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Figure 7.6 Description of the Mono Way Bridge numerical model (not all springs are shown). 
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Figure 7.7 Description of the Murray Ridge Bridge numerical model (not all springs are shown). 



 

      

  

   

     

          

        

       

       

        

     

        

         

           

          

   

       

    

         

     

       

     

 

 

7.5 NONLINEAR RESPONSE HISTORY ANALYSIS RESULTS 

7.5.1 Response Summary 

Table 7.8 summarizes the mean values of responses of the redesigned bridges at the DE level of 

shaking. The Mono Way Bridge develops peak drift ratios in the transverse direction between 

5.1% and 6.0% for the FNT loading scenario, and peak drift ratios of 2.5% – 3.4% in the 

longitudinal direction for the FNL case. The corresponding drift ratios for the Murray Ridge 

Bridge are smaller as it is stronger than the Mono Way Bridge in both directions. Namely, 

Murray Ridge Bridge sustains peak transverse and longitudinal drift ratios of 3.3% – 3.6% and 

1.8% – 2.0% for the FNT and FNL cases, respectively. The residual drift ratios are less than 

0.5% for both bridges, whereas the residual foundation settlements are less than 1.5 and 0.5 

inches for the Mono Way Bridge and the Murray Ridge Bridge, respectively. The peak plastic 

rotation at the top of the columns in the FNL scenario is 1% – 1.2% for the Mono Way Bridge, 

and 0.4% – 0.6% for the Murray Ridge Bridge. The corresponding peak tensile strains of the 

longitudinal reinforcement are 1.6% – 2.2% and 1.1% – 1.5% indicating acceptable levels of 

inelasticity. The longitudinal reinforcement at the base of the columns remains in the elastic 

range (less than 0.2% tensile strain), as is also the case for the deck pre-stressing strands since 

the mean peak incremental tensile strain of the strands (with respect to the initial tension) does 

not exceed a value 0.2% for either bridge. Lastly, it is worth noticing that significant axial load 

variation takes place at the abutments and the nearest bents of the Murray Ridge Bridge at both 

the FNT and FNL cases. The implication of this axial load variation in the case of the Murray 

Ridge Bridge is discussed below in more detail. Significant axial load variation is also observed 

for the Mono Way Bridge, but to a lesser extent. 
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Table 7.8 Mean values for different response parameters for the DE level of shaking. 

Response parameter Location 
Mono Way Bridge 

FNT FNL 
Murray Ridge Bridge 
FNT FNL 

Peak column transverse 
drift ratio1 (%) 

B2 
B3 
B4 

6.0 3.2 
5.3 2.8 
5.1 2.6 

3.6 2.4 
3.3 2.1 
3.6 2.3 

Peak column longitudinal 
drift ratio1 (%) 

B2 
B3 
B4 

2.2 3.4 
1.9 2.9 
1.6 2.5 

1.3 2.0 
1.2 1.8 
1.3 1.9 

Residual column 
transverse drift ratio1 (%) 

B2 
B3 
B4 

0.1 0.0 
0.0 0.0 
0.0 0.0 

0.1 0.1 
0.1 0.1 
0.1 0.1 

Residual column B2 0.2 0.1 0.1 0.2 
longitudinal drift ratio1 

(%) 
B3 0.1 0.0 0.0 0.2 
B4 0.1 0.0 0.1 0.2 

Residual footing 
settlement (in) 

B2 
B3 
B4 

1.2 0.8 
0.8 0.5 
0.7 0.4 

0.2 0.2 
0.4 0.3 
0.2 0.2 

Column base longitudinal B2 0.2 0.2 0.1 0.1 
reinforcement peak tensile 
strain (%) 

B3 0.2 0.2 0.1 0.1 
B4 0.2 0.2 0.1 0.1 

Column top longitudinal B2 1.4 2.2 0.7 1.4 
reinforcement peak tensile 
strain (%) 

B3 1.1 2.0 0.7 1.1 
B4 0.7 1.6 0.9 1.5 

Column top peak plastic 
rotation (%) 

B2 
B3 
B4 

0.6 1.1 
0.6 1.2 
0.3 1.0 

0.3 0.6 
0.2 0.4 
0.3 0.5 

Pre-stressing strands tensile strain2 (%) 0.11 0.14 0.04 0.04 
Minimum and maximum A1 0.49 (1.51) 0.48 (1.62) 0.56 (2.19) 0.47 (2.17) 
(in parentheses) 
normalized axial 

B2 0.68 (1.47) 0.62 (1.61) 0.24 (1.77) 0.33 (1.70) 

compression force3 B3 0.71 (1.38) 0.63 (1.48) 0.59 (1.46) 0.56 (1.42) 
B4 0.74 (1.36) 0.72 (1.43) 0.46 (1.57) 0.50 (1.54) 
A5 0.61 (1.35) 0.58 (1.39) 0.44 (2.06) 0.42 (1.94) 

Bridge 0.78 (1.32) 0.74 (1.40) 0.71 (1.42) 0.70 (1.40) 
1 2In the local transverse and longitudinal direction for the Murray Ridge Bridge; Additional 
to the initial tensile strain of the deck pre-stressing strands; 3Low-pass filtered at 5 Hz. 
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7.5.2 Validation of the Displacement Based Method of Analysis 

Transverse direction response 

Figure 7.8 plots the mean transverse drift ratio demand of the 14 nonlinear response history 

analyses for the DE level of shaking and the FNT case, as well as the corresponding predictions 

from the displacement-based assessment for three cases: (i) Cm = 1 and Ca = 1; (ii) Cm = 0.7 and 

Ca = 1; and (ii) Cm = 0.7 and Ca the upper bound value of Table 7.3. Case (i) represents the 

scenario where the bents are analyzed independently, without correcting for the mass 

participation factor in the main translational mode in the transverse direction being less than 1 

and without also accounting for the possible restrain effect of the abutments. Case (ii) differs 

from case (i) by accounting only for the reduced effective seismic mass, while case (iii), 

compared to case (ii), also accounts for the possible restrain at the abutments through the 

abutment strength correction factor being different than 1. 

It is observed that in all three cases the drift ratio demand predicted by the displacement-

based analysis method overestimates the mean drift ratio demand obtained by the nonlinear 

dynamic analyses. The overestimation is greatest (14% – 35% for the Mono Way Bridge, and 

192% – 206% for the Murray Ridge Bridge) for case (i) when neither the reduced effective 

seismic mass, nor the abutment strength characteristics are considered. Consideration of the 

minimum suggested mass participation factor (Cm = 0.7) alone, marginally improves the 

prediction of the displacement-based method (overestimation of 16% – 29% for the Mono Way 

Bridge, and 185% – 190% for the Murray Ridge Bridge). This is expected since a Cm value of 

0.7, instead of 1, will only stiffen the response of the independent bents by approximately 16%. 

Extending this observation, it can be concluded that the exact Cm value in the suggested range of 

0.7 – 0.9 is of little significance. Case (iii), where the upper bound Ca value is used in addition to 

Cm = 0.7 further improves the results. This improvement is more noticeable for the Murray Ridge 

Bridge where Ca = 1.6, as opposed to the Mono Way Bridge where Ca = 1.15. For this case, the 

displacement-based assessment method overestimates the peak drift ratio demand by 13% – 24% 

for the Mono Way Bridge, and by 70% – 122% for the Murray Ridge Bridge. The reasonable 

drift demand overestimation for the Mono Way Bridge and the respective significant 

overestimation for the Murray Ridge Bridge may be explained by the reasons discussed below. 

Firstly, the single source of hysteretic damping considered in the analysis of the bents in 
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Figure 7.8 Comparison between the mean transverse drift ratio demands from NRHA and DBA for the 
DE-FNT case: (a) Mono Way Bridge; and (b) Murray Ridge Bridge. 

the transverse direction comes from the soil inelastic action during rocking. As discussed in 

Chapter 4, the proposed equations for the equivalent viscous damping due to rocking have a 

built-in conservatism as they are calibrated to match the median drift ratio demand computed by 

the NRHAs, and hence, they typically overestimate the mean response (see Figure 4.13). 

Secondly, the effect of the abutments on the response of the bents is considered only 

through the abutment strength correction factor (Ca) that would typically result to a stiffened 

response of the analyzed bents. For example, the used Ca = 1.15 and Ca = 1.6 stiffen the bents of 

the Mono Way and the Murray Ridge Bridge by about 7% and 20%. However, the effect of the 

increased energy dissipation at the abutments, especially due to high frictional resistance 

mechanisms, is neglected. The equivalent viscous damping at the bents is solely that of 

foundation rocking that is a low level energy dissipation mechanism (ξeq smaller than 

approximately 8%) due to the controlled soil inelasticity (ρac < 0.125), while ξeq at the abutments 

that deform by frictional sliding can be in the 15 – 25% range. This simplification has a greater 

impact on the drift ratio demand prediction of the Murray Ridge Bridge where the high 
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dissipation abutment diaphragm – spread footing sliding mechanism accounts for 25% of the 

total lateral capacity of the bridge (after wing walls’ damage), as opposed to the Mono Way 

Bridge where the high dissipation at the PTFE bearings provides only 10% of the total lateral 

capacity of the bridge (after shearing off of the shear keys). An approximate method for the 

quantification of the abutments’ energy dissipation effects in the displacement-based analysis 

method is discussed in the following section. 

Third, because the abutment diaphragm of the Murray Ridge Bridge is significantly wider 

than the bents’ footings (approximately 2.5 times wider), there is significant dynamic framing 

action between the abutments and the nearest bents during transverse response that is not 

included in the simplified displacement-based analysis method. The result of this framing action 

is axial load transfer to the abutments that are more robust, both in terms of energy dissipation 

and strength (sliding coefficient, μ = 0.5), compared to the rocking bents. Figure 7.9 illustrates 

this mechanism; the similar rotation at the footing and deck centroid of bent 2, as well as at the 

deck centroid at abutment 1, results to a partial “lift up” of bent 2 and thus, to a decrease in axial 

load at the bent and an increase in axial load at the abutment. To further examine whether this 

mechanism can explain the significant overestimation of drift demands for the Murray Ridge 

Bridge, Figure 7.10 plots the axial load at the abutments, bents and the bridge, as well as the 

corresponding resisting lateral force in the transverse direction. Figure 7.10 shows significant 

dynamic oscillation of the axial load and lateral resisting force at the abutments and the bents; 

however, the total shear in the transverse direction compares well with the predicted capacity 

used in design. Thus, this mechanism alone, cannot explain the significant overestimation of drift 

demands for the Murray Ridge Bridge. 

It is concluded that the displacement-based analysis method, as presented in Section 6.1, 

provides a reasonably conservative estimate of drift ratio demands in cases where high energy 

dissipation mechanisms at the abutments do not significantly contribute to the transverse strength 

of the bridge (Mono Way Bridge). In the Murray Ridge Bridge, such mechanisms do contribute 

significantly to the transverse bridge strength, and the proposed approach was found to yield too 

conservative estimates. In this case, a complete bridge-level approach that directly accounts for 

the different damping sources may be preferable. In addition, significant dynamic framing action 

in the transverse direction of the Murray Ridge Bridge may have further worsened the prediction 

of the displacement-based analysis method. 
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Figure 7.9 Abutment to bent dynamic interaction mechanisms for Murray Ridge Bridge under a ground motion with the fault-normal component 
in the transverse direction demonstrating a limitation of the simplified displacement-based analysis method: (a) rotation about the 
longitudinal axis for abutment 1 and bent 2; (b) deck uplift at abutment 1 and bent 2; (c) dynamic axial load at abutment 1 and bent 
2; (d) schematic illustration of kinematic interaction. 
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Figure 7.10 Effect of the abutment to bent dynamic interaction mechanisms for Murray Ridge Bridge, 
under a ground motion with the fault-normal component in the transverse direction, to the 
total transverse load carrying capacity of the bridge: (a) axial load at abutments, bents and 
bridge; and lateral force resisted by the (b) abutments, (c) bents and (d) bridge. Note: 
response histories are low-pass filtered at 5 Hz. 
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Approximate quantification of abutments’ energy dissipation effects for excitation in the 
transverse direction 

This section presents an approximate quantification of the abutments’ energy dissipation effects 

for excitation in the transverse direction so that the gross overestimation of drift demands for the 

Murray Ridge Bridge can be better understood and explained. Since the equivalent viscous 

damping at the individual bents is solely that of foundation rocking and energy dissipation at the 

abutments is neglected, an energy dissipation correction factor (Cξ_ab) can be introduced to scale-

up the equivalent damping of the rocking footings. This correction factor can be estimated as 

diss _ab
ξ _ab

diss _b

E
C 1

E
  (7.1)  

where Ediss_ab is the energy dissipated at the two abutments and Ediss_b is the energy dissipated at 

the bents. Eqn. (7.1) can be rewritten as 

ab ab ab
i 1, n

ξ _ab
b b b

i 2...n 1

ξ F Δ
C 1

ξ F Δ


 

 

 
 




(7.2)  

where ξab (or ξb) is the equivalent viscous damping at the abutments (or bents), Fab (or Fb) is the 

lateral force at the abutments (or bents), Δab (or Δb) is the deck transverse displacement at the 

abutments (or bents), and n is the total number of abutments and bents combined. 

Since the DBA method presented in Section 6.1 does not provide an estimate of the deck 

displacement at the abutments (Δab) due to the individual bents’ analysis approach, Eqn. (7.2) 

may be further simplified as 

ab _f ab _f
i 1, n

ξ _ab
b b

i 2...n 1

ξ F
C 1

ξ F


 



 





(7.3)  

where ξb and Fb are the equivalent viscous damping and lateral force at each bent as estimated by 

the initial individual bent approach assuming Cξ_ab = 1 (e.g. from Table 7.4 for this case), and 

ξab_f and Fab_f are the equivalent viscous damping and lateral force at each abutment due to the 

sliding resistance mechanisms for a lateral displacement that is the average of the lateral 

displacement of the bents. Cξ_ab estimated by Eqn. (7.3) and the procedure described above may 

or may not be larger than that estimated by Eqn. (7.2); while the abutments typically displace 
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less than the bents of a bridge, Eqn. (7.3) neglects energy dissipation at the abutments due to 

other force resisting mechanisms such as shear keys or wing walls. 

Once Cξ_ab has been estimated, the DBA method described in Section 6.1 can be repeated 

by scaling-up the equivalent viscous damping of the rocking footings through Cξ_ab. This 

procedure will provide a one-time updated drift demand prediction that approximately accounts 

for the abutments’ energy dissipation effects. Alternatively, a double-iterative procedure can be 

used until Cξ_ab stabilizes. The described procedure results to a one-time correction Cξ_ab value of 

1.55 for the Mono Way Bridge which is also the stable Cξ_ab value, while for the Murray Ridge 

Bridge the one-time correction for the abutments’ energy dissipation effects yields Cξ_ab = 3.02 

with the converged Cξ_ab value found to be 3.25 after an additional iteration. 

Figure 7.11 compares the mean transverse drift ratio demand of the 14 NRHA for the DE 

level of shaking and the FNT case, the DBA prediction for the case with Cm = 0.7, Ca equal to 

the upper bound value of Table 7.3 and Cξ_ab = 1 (also shown in Figure 7.8), and the DBA 

prediction for the case with Cm = 0.7, Ca equal to the upper bound value of Table 7.3 and Cξ_ab > 

1 (i.e. case with approximate quantification of the abutments’ energy dissipation effects). It is 

observed that the described procedure for quantifying the energy dissipation at the abutments 

greatly improves the DBA prediction for the Murray Ridge Bridge, without jeopardizing the 

corresponding prediction for the Mono Way Bridge. More specifically, the drift demand 

overestimation for the Mono Way Bridge reduces from the 13 – 24% range to less than 9%, 

whereas the drift demand comparison for the Murray Ridge Bridge reduces from an 

overestimation in the 70 – 122% range to a relative error of less than 7%. 

It is noted that although the approximate quantification of abutments’ energy dissipation 

effects for excitation in the transverse direction has improved the DBA prediction for the 

considered bridges, it should not be generalized to other cases without caution. Since Eqn. (7.1) 

assumes that the abutments’ energy dissipation correction factor (Cξ_ab) is no smaller than one, 

and the equivalent viscous damping ratio of the rocking bents is associated to an enhanced lateral 

secant stiffness through the abutment strength correction factor (Ca), the approximate method 

can yield unconservative results when the damping ratio at the abutments (ξab) is smaller than 

that at the rocking bents (ξb). Unconservative estimates can also be produced for short bridges 

and/or strong abutments that do not displace laterally due to the simplification of Eqn. (7.3). In 

such cases, the iterative eigenvalue approach, briefly mentioned in Section 6.1, shall be used as a 
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more complete and accurate approach that has been tested more extensively, with equivalent 

linear properties of the rocking bents as provided in Chapters 4 and 5. 
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Figure 7.11 Comparison between the mean transverse drift ratio demands from NRHA and DBA with 
approximate quantification of the abutments’ energy dissipation effects for the DE-FNT 
case: (a) Mono Way Bridge; and (b) Murray Ridge Bridge. 

Longitudinal direction response 

Figure 7.12 plots the mean longitudinal drift ratio for the DE level FNT case, as well as the 

corresponding predictions from the displacement-based analysis method for Cm = 1. For both 

bridges DBA predicts well the drift ratio; the prediction for the Mono Way Bridge is within 3% 

for all bents, while that for the Murray Ridge Bridge is approximately 30% larger. 

The good prediction for the longitudinal direction is expected since: (i) the bridge-level 

approach directly accounts for the energy dissipation from all sources; (ii) the effect of the built-

in conservatism of the equivalent viscous damping of foundation rocking is reduced as it is not 

the only source of hysteretic damping that affects the system-level damping; and (iii) framing 

action in the longitudinal direction does not bias the results as it does in the transverse direction. 
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Figure 7.12 Comparison between the mean longitudinal drift ratio demands from NRHA and DBA for 
the DE-FNL case: (a) Mono Way Bridge; and (b) Murray Ridge Bridge. 

7.6 SUMMARY 

In this chapter, two existing bridges of Caltrans were hypothetically re-designed, using columns 

on rocking shallow foundations and moment-resistant connections with the deck, for a site of 

very high seismic hazard in San Bernardino, California. The objective of the designs was limited 

post-earthquake structural damage and residual deformations in order to achieve prompt post-

earthquake functionality. Three-dimensional nonlinear response history analyses (NRHA) of the 

full bridges were used to validate the seismic designs. Moreover, the NRHA results are used to 

validate the system level DBA method (Chapter 6) used to estimate displacement demands and 

thus to design the bridges. Findings can be summarized as follows: 

1. The performed three-dimensional NRHA of the two redesigned bridges demonstrated 

their excellent seismic performance at a very severe site. Mono Way Bridge developed 

mean peak drift ratios of up to 6% in the transverse direction and up to 3.2% in the 

longitudinal direction, whereas the corresponding mean peak drift ratios for the Murray 
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Ridge Bridge were 3.6% and 2.4%. The mean peak tensile strain of the longitudinal 

reinforcement at the top of the columns was 2.2% for the Mono Way Bridge and 1.5% for 

the Murray Ridge Bridge. The mean residual drift ratios for both bridges were limited to 

less than 0.5%. 

2. The displacement-based method of analysis in the transverse direction provides a 

reasonable, but somewhat conservative (20% overestimation for the Mono Way Bridge 

and 100% overestimation for the Murray Ridge Bridge) estimate of the mean peak drift 

demand computed from the 14 nonlinear response history analyses. 

3. The conservatism of the method depends on the relative contribution of high energy 

dissipation mechanisms at the abutments to the overall strength of the bridge, since the 

proposed method neglects such effects. For the Murray Ridge Bridge, the amount of 

equivalent viscous damping due to the frictional energy dissipation at the abutments in 

the transverse direction was 2 times that of all the bents together, while the corresponding 

value for the Mono Way Bridge was only 0.5. 

4. Approximate quantification of abutments’ energy dissipation effects in the transverse 

direction, through a scale-up factor used to enhance energy dissipation of the rocking 

footings at individual bents, significantly improved DBA prediction for the Murray Ridge 

Bridge resulting to an error of less than 10% compared to the NRHA results. 

5. Peak drift demand in the longitudinal direction were well predicted by the displacement-

based analysis due to the used bridge-level approach that directly accounts for the 

strength and energy dissipation characteristics of all components. 

6. For the very wide deck Murray Ridge Bridge, using single-column bents produces quite 

significant uplift displacements at the abutments and the nearest bents. The uplift causes a 

significant variation in axial loads at the abutments and the nearest bents, which is not 

considered in the DBA method. Despite that, the increase of lateral strength of the bridge 

in the transverse direction due to the increased axial compression at the abutments was up 

to 10%. 

7. Use of two-column bents with pins at the top of the columns and rocking foundations at 

the base of the columns could alleviate the variation of axial load on columns due to 

uplift forces at the abutments. 
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8 Response Spectrum Analysis of the Bridges with 
Rocking Foundations 

8.1 INTRODUCTION 

This chapter presents the results of a response spectrum analysis of the two re-designed bridges, 

with rocking shallow foundations. This method is commonly used for estimating displacement 

demands of ordinary reinforced-concrete fixed-base bridges by Caltrans engineers. The results 

from the response spectrum analysis (RSA) method are compared to the results of the 

displacement-based analysis (DBA) method, and the three-dimensional nonlinear response 

history analysis (NRHA). 

8.2 NUMERICAL MODEL 

The response spectrum analysis was performed using the software SAP2000. A numerical model 

for each bridge was developed; the model assumptions and the stiffness of the elastic elements 

and springs are described below. Three elements were used to model each column, whereas four 

elements were used for each deck span, and one element for each footing. Stiff elements 

connected the top of the columns and the centroid of the deck for the Mono Way Bridge and to 

model the column-to-bent cap joints for the Murray Ridge Bridge. Two additional elements were 

used to model the bent caps of the second bridge in the transverse direction. The rocking 

foundations were modeled using rotational springs with stiffness equal to the Deng et al. [2014] 

secant rotational stiffness at first mobilization of the rocking moment capacity (i.e. footing 

rotation of 0.012 rad). The footing and the column elements were modeled using 50% of their 

gross flexural rigidity, whereas 100% of the gross flexural rigidity was used for the post-

tensioned deck elements and the transverse bent cap elements of Murray Ridge Bridge. The 
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abutments were modeled using linear elastic horizontal springs in the transverse and longitudinal 

direction. Two different cases were assumed: (a) a “locked” abutment case; and (b) an 

“unlocked” abutment case. For the “locked” abutment case, the stiffness of each longitudinal 

abutment spring was equal to the initial stiffness of the PTFE bearings for the Mono Way Bridge 

and of the abutment diaphragm to spread footing sliding for the Murray Ridge Bridge, and half 

of the initial stiffness provided by backfill passive resistance. For the transverse spring, the 

frictional stiffness was used, ignoring for simplicity the shear keys of the Mono Way Bridge and 

the wing walls of the Murray Ridge Bridge. For the “unlocked” abutment case, both the 

longitudinal and the transverse springs were modeled using 10% of the initial frictional stiffness. 

These two cases were analyzed in an attempt to bound the expected response of the bridges. 

Translational and rotatory masses were assigned at each node, whereas point loads were used for 

the analysis under gravity loads. Figure 8.1 shows an isometric view of the Mono Way Bridge 

model in SAP2000. 

Figure 8.1 Isometric view of the Mono Way Bridge model in SAP2000. 
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8.3 MODAL ANALYSIS RESULTS 

Table 8.1 summarizes the modal analysis results of the two re-designed bridges for the “locked” 

and “unlocked” abutment models. It shows the periods and modal masses (as percentage of the 

total bridge mass) that correspond to the first four modes in the transverse direction and the first 

mode in the longitudinal direction. The effective horizontal seismic mass is approximately 70% 

and 85% of the total bridge mass for the Mono Way Bridge and the Murray Ridge Bridge, 

respectively, irrespective of excitation direction and abutment modeling. The fundamental 

vibration period in the longitudinal direction is shown to increase significantly for both bridges, 

by 180% for the Mono Way Bridge and by 120% for the Murray Ridge Bridge, when the 

abutments are “unlocked”. In the transverse direction, the corresponding increase is 100% for the 

wide-deck Murray Ridge Bridge, while an only 22% increase is observed for the Mono Way 

Bridge that has a more flexible deck. 

Table 8.1 Modal analysis results for the two bridges. 
Bridge Abutment Mode Type Period, T (s) Modal Mass, M* (%)1 

Mono 
Way 

"Locked" Transverse 1 
Transverse 2 

2.17 
0.86 

59.3 
--2 

Transverse 3 
Transverse 4 

0.48 
0.31 

8.9 
--2 

Longitudinal 1 0.62 70.5 
"Unlocked" Transverse 1 

Transverse 2 
2.65 
1.48 

65.8 
--2 

Transverse 3 
Transverse 4 

0.90 
0.47 

3.0 
--2 

Longitudinal 1 1.74 71.9 
Murray 
Ridge 

"Locked" Transverse 1 
Transverse 2 
Transverse 3 

0.51 
0.35 
0.27 

61.5 
17.7 
--2 

Transverse 4 0.23 --2 

Longitudinal 1 0.45 85.4 
"Unlocked" Transverse 1 1.00 78.9 

Transverse 2 0.67 --2 

Transverse 3 0.36 5.5 
Transverse 4 0.26 --2 

Longitudinal 1 0.98 86.4 
1Percentage of total bridge mass; 2Anti-symmetric mode. 
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8.4 RESPONSE SPECTRUM ANALYSIS RESULTS 

The response spectrum analysis used the 5% damped mean response spectrum of the DE-level 

ground motions. For each bridge and abutment model, two analyses were conducted. In the first 

analysis, the mean response spectrum of the fault-normal (FN) components was imposed in the 

transverse bridge direction whereas that of the fault-parallel (FP) components was imposed in the 

longitudinal bridge direction (DE-FNT case). In the second analysis, the orientation of the FN 

and FP mean response spectra was reversed (DE-FNL case). The nodal displacements from each 

mode were summed together using the Complete Quadratic Combination 3 (CQC3) method 

[Menun and Kiureghian 1998]. 

Tables 8.2 and 8.3 summarize the response spectrum analysis (RSA) drift ratio results of 

the bridge bents in the transverse and longitudinal direction, in comparison to the nonlinear 

response history analysis (NRHA) and the displacement-based analysis (DBA) results, for the 

DE-FNT and DE-FNL cases, respectively. 

8.4.1 Transverse Direction Response 

For the “locked” abutment model, RSA method predicts drift ratio demands in the transverse 

direction that are in the 2.7% – 3.6% range for the Mono Way Bridge and in the 0.6% – 0.8% 

range for the Murray Ridge Bridge, whereas the corresponding mean drift ratio demands from 

the NRHA are 5.1% – 6.0% and 3.3% – 3.6%, respectively. Hence, the “locked” abutment RSA 

model results to an underestimation of drift demand, compared to NRHA, in the order of 10 – 

55% for the Mono Way Bridge and in the order of 75% – 85% for the Murray Ridge Bridge. The 

serious underestimation of the Mono Way Bridge transverse response is due to the stiff deck that 

does not allow significant displacements to develop at the bridge bents if deck translation at the 

abutments is restricted. The observed underestimation is expected as the “locked” abutment 

model intends to provide the lower bound estimate of the expected seismic response. 

For the “unlocked” abutment model, RSA method predicts transverse drift ratio demands 

in the 3.9% – 5.4% range for the Mono Way Bridge and in the 2.4% – 2.6% range for the Murray 

Ridge Bridge. Although these results are closer to the NRHA, the “unlocked” abutment model 

did not bound the bridge response as determined by the NRHA and is unconservative. The drift 

demand underestimation is up to 24% for the Mono Way Bridge, and about 30% for the Murray 
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Ridge Bridge. As discussed in Chapter 7, DBA method provides conservative estimates of the 

peak transverse response when abutments’ energy dissipation effects are not considered; the 

overestimation is between 13% and 23% for the Mono Way Bridge, and between 70% and 120% 

for the Murray Ridge Bridge. When energy dissipation at the abutments is approximately 

quantified, the DBA drift demand prediction error reduces to less than 10% for the Murray Ridge 

Bridge. 

8.4.2 Longitudinal Direction Response 

For the “locked” abutment model, RSA method predicts small drift ratio demands in the 

longitudinal direction; the range is 0.6% – 0.9% for the Mono Way Bridge and 0.6% – 0.7% for 

the Murray Ridge Bridge. These drifts are approximately 75% and 65% smaller than those 

computed by NRHA for the Mono Way and the Murray Ridge Bridge, respectively. When the 

abutments are “unlocked”, RSA method results overestimate those from the NRHA by 13% for 

the Mono Way Bridge and by 35% for the Murray Ridge Bridge. Therefore, the considered 

abutment models were successful in enveloping the NRHA response. 

The DBA method in the longitudinal direction provides an almost exact estimation of the 

Mono Way Bridge response, and an approximately 35% conservative estimate of the Murray 

Ridge Bridge response. Thus, the DBA method proves to be more successful in estimating the 

peak longitudinal response for both bridges, compared to the RSA method. 

Table 8.2 Response spectrum analysis (RSA) drift ratio (%) results in the transverse direction, in 
comparison to the nonlinear response history analysis (NRHA) and the displacement-based 
analysis (DBA) results, for the DE-FNT case. 

RSA  
"Locked" "Unlocked"  

Bridge Location Abutment Abutment NRHA DBA1  

Mono Bent 2 3.6 4.6 6.0 7.3 
Way Bent 3 4.8 5.3 5.3 6.5 

Bent 4 2.7 3.9 5.1 5.7 
Murray Bent 2 0.6 2.5 3.6 6.1 
Ridge Bent 3 0.8 2.4 3.3 7.2 

Bent 4 0.7 2.6 3.6 7.1 
1DBA results are for Cm = 0.7, the upper bound Ca value of Table 7.3 and Cξ_ab = 1. 
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Table 8.3 Response spectrum analysis (RSA) drift ratio (%) results in the longitudinal direction, 
compared to the nonlinear response history analysis (NRHA) and the displacement-based 
analysis (DBA) results, for the DE-FNL case. 

RSA  
"Locked" "Unlocked"  

Bridge Location Abutment Abutment NRHA DBA  
Mono Bent 2 0.9 3.9 3.4 3.5 
Way Bent 3 0.7 3.2 2.9 2.9 

Bent 4 0.6 2.8 2.5 2.5 
Murray Bent 2 0.7 2.7 2.0 2.7 
Ridge Bent 3 0.6 2.4 1.8 2.3 

Bent 4 0.6 2.6 1.9 2.5 

8.5 SUMMARY 

In this chapter, the results of a response spectrum analysis of the two re-designed bridges with 

rocking shallow foundations have been presented. For each bridge, two abutment models have 

been considered: (a) a “locked” abutment case; and (b) an “unlocked” abutment case. These two 

models were intended to bound the seismic response as obtained by the NRHA in Chapter 7. 

Findings can be summarized as follows: 

1. For seismic response in the transverse direction, the RSA method was found to be 

unsuccessful in bounding the bridge response in the design earthquake as obtained by the 

NRHA. RSA predictions assuming unlocked abutments greatly underpredicted the 

NRHA displacements for these two bridges subjected to the design earthquake. The 

underestimation was up to 55% for the Mono Way Bridge, and up to 85% for the Murray 

Ridge Bridge. The “unlocked” abutment RSA models yielded more reasonable, but 

unconservative estimates of peak displacement response. The underestimation was up to 

24% for the Mono Way Bridge and up to 30% for the Murray Ridge Bridge. 

2. For seismic response in the longitudinal direction, the RSA method was successful in 

bounding the bridge response as obtained by the NRHA. The “locked” abutment RSA 

models underestimated the NRHA peak displacement demands by approximately 75% 

for the Mono Way Bridge and 65% for the Murray Ridge Bridge, while the 

corresponding overestimations of the “unlocked” abutment RSA models were 13% and 

35%, respectively. 
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3. Overall RSA results with unlocked abutments compared reasonably to the NRHA results 

for the bridges and seismic hazard level considered in this study. However, they also 

showed significant sensitivity to the abutment modeling details. Additional studies would 

be required to come to a clear conclusion about the reliability and accuracy of RSA for 

different bridges or different levels of seismic shaking. 

4. The proposed DBA procedure, discussed in Chapter 7, appears to provide more reliable 

and more conservative results as compared to the RSA approach for the example bridges 

and design earthquakes. 
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9 Conclusions 

This study developed seismic design guidelines for ordinary bridges with columns on rocking 

foundations with or without controlled plastic hinging at the top of the columns. The seismic 

design concept results in bridges that sustain very strong seismic excitation with minimal 

structural damage and small residual displacements and thus in prompt post-earthquake 

functionality. The proposed seismic design method is based on displacement-based analysis 

(DBA). The method covers the analysis and design of single rocking bents as well as system-

level design of bridges for excitation in the transverse and longitudinal direction. 

On the single bent level, the DBA approach estimates the displacement demand using the 

design linear displacement spectrum and an equivalent linear viscoelastic single-degree-of-

freedom (SDOF) model that represents the analyzed structural system. 

The equivalent viscous damping of a rocking footing is determined based on parametric 

nonlinear response history analyses (NRHA) of single stiff columns supported on rocking 

foundations with different critical contact area ratios (ρac) subjected to different types of ground 

motions (Chapter 4). The rocking foundations are modeled using a calibrated, based on physical 

tests, beam-on-nonlinear-Winkler-foundation scheme (Chapter 3). 

The proposed DBA method covers the analysis of a single elastic flexible column on 

rocking foundation (Chapter 4), as well as the analysis of a single flexible column with rocking 

foundation at the base and plastic hinging at the top (Chapter 5). Provisions for the system level 

analysis of multi-span bridges were also developed (Chapter 6); a complete bridge system 

approach is used for the longitudinal bridge analysis whereas for the transverse direction the 

bridge bents are analyzed individually considering bent-to-bent as well as bents-to-abutments 

interaction through two modification factors. For the latter case, an approximate quantification of 
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the effect of high frictional energy dissipation at the abutments is briefly covered by introducing 

an additional modification factor (Chapter 7). 

To validate the proposed seismic design and analysis methods, two existing bridges of 

Caltrans are redesigned using rocking foundations for a site of very high seismic hazard located 

at San Bernardino, 1.5 km from the San Andreas Fault, for which the design earthquake (DE) 

displacement spectrum has a 1.6 ft/s slope up to a period of 5 seconds. Although Deng et al. 

[2012] pointed out that, for multi-column bents, column damage may be further reduced by use 

of pins in place of moment connections, the redesigns in this report were constrained to maintain 

moment-resistant connections between the tops of the columns and the deck. The first bridge has 

relatively weak abutments in the transverse (10% of the total lateral-transversal strength) and 

longitudinal (19% of the total lateral-longitudinal strength) direction (Mono Way Bridge), 

whereas the second bridge has strong abutments in both directions (24% and 74% of the total 

lateral transversal and longitudinal strength, respectively) with high energy dissipation (Murray 

Ridge Bridge). The seismic designs of the two bridges are validated using three-dimensional 

NRHA of the two bridges (Chapter 7) including modeling of all major components and force-

resisting mechanisms. The results of the NRHA are also used to validate the DBA results for the 

two bridges. Lastly, a response spectrum analysis (RSA) of the redesigned bridges is conducted 

and compared with the NRHA and DBA (Chapter 8). The main findings of this study can be 

summarized as follows: 

1. Three-dimensional nonlinear response history analyses (NRHA) of the two redesigned 

bridges using rocking shallow foundations, demonstrated their excellent performance at a 

site with severe seismic hazard. Mono Way Bridge developed mean peak drift ratios of 

up to 6% in the transverse direction and up to 3.2% in the longitudinal direction, whereas 

the corresponding mean peak drift ratios for the Murray Ridge Bridge were 3.6% and 

2.4%. The mean peak tensile strain of the longitudinal reinforcement at the top of the 

columns was 2.2% for the Mono Way Bridge and 1.5% for the Murray Ridge Bridge. The 

mean residual drift ratios for both bridges were limited to less than 0.5%. 

2. The reliability of the proposed displacement-based analysis (DBA) approach was 

demonstrated. The proposed equivalent viscous damping expression of a rocking footing 

to be used in DBA results to a prediction that closely matches the median NRHA drift 

ratio demand. It was also showed that irrespective of the ground motion set used, 68% of 
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the displacement demands predicted by DBA were within a factor of 2 higher and a 

factor of 1.3 lower than the drift ratio demand computed from the NRHA. 

3. The three-dimensional NRHA of the redesigned bridges, showed that the proposed DBA 

method for excitation in the transverse bridge direction provides a reasonable, but 

somewhat conservative (by approximately 20%) estimate of the mean drift ratio demand, 

when the relative contribution of high energy dissipation mechanisms at the abutments to 

the overall lateral bridge strength is small (Mono Way Bridge). When the abutment 

contribution increases (Murray Ridge Bridge), the proposed DBA method significantly 

overestimates drift demands (by approximately 100%) as it only accounts for the 

abutments’ strength but not for the large energy dissipation expected from abutment 

sliding mechanisms. When such abutment energy dissipation characteristics are 

approximately quantified by an additional modification factor, the predicted DBA drift 

demands improve significantly for the Murray Ridge Bridge (less than 10% error). 

4. The coupling between the deck uplift at the abutments and uplift of the bents (due to 

foundation uplift) under transverse excitation can cause significant variation of axial 

loads that are not considered in the DBA. The Murray Ridge Bridge, with a relatively 

wide deck supported on one rocking footing per bent and rotational fixity at the column-

deck connection produced more significant coupling than the Mono Way Bridge 

example. The uplift forces at the abutment could be ameliorated by use of multi-column 

bents with plastic hinging or a pinned connection at the tops of the columns, but 

exploration of this alternative was outside the scope of this project. 

5. NRHA drift demands in the longitudinal direction of the two re-designed bridges were 

well predicted by the DBA method (overestimation of 3% for the Mono Way Bridge and 

30% for the Murray Ridge Bridge) due to the used bridge-level approach that directly 

accounts for both the strength and energy dissipation characteristics of all contributing 

components. 

6. Response spectrum analysis (RSA) of the two bridges using 5% damping and two 

abutment models, a “locked” and an “unlocked” case, did not provide definite 

conclusions about the reliability and accuracy of the method that assumes validity of the 

equal displacement rule. Overall, the “unlocked” abutment models compared more 

reasonably to the NRHA results for the bridges and seismic hazard level considered in 
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this study. The “unlocked” abutment models underestimated peak displacement demands 

in the transverse direction by 30% and overestimated displacement demands in the 

longitudinal direction by 20%. 
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